首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acidification and ion permeabilities of highly purified rat liver endosomes   总被引:7,自引:0,他引:7  
While it is well established that acidic pH in endosomes plays a critical role in mediating the orderly traffic of receptors and ligands during endocytosis, little is known about the bioenergetics or regulation of endosome acidification. Using highly enriched fractions of rat liver endosomes prepared by free flow electrophoresis and sucrose density gradient centrifugation, we have analyzed the mechanism of ATP-dependent acidification and ion permeability properties of the endosomal membrane. This procedure permitted the isolation of endosome fractions which were up to 200-fold enriched as indicated by the increased specific activity of ATP-dependent proton transport. Acidification was monitored using hepatocyte and total liver endosomes selectively labeled with pH-sensitive markers of receptor-mediated endocytosis (fluorescein isothiocyanate asialoorosomucoid) or fluid-phase endocytosis (fluorescein isothiocyanate-dextran). In addition, changes in membrane potential accompanying ATP-dependent acidification were directly measured using the voltage-sensitive fluorescent dye Di-S-C3(5). Our results indicate that ATP-dependent acidification of liver endosomes is electrogenic, with proton transport being accompanied by the generation of an interior-positive membrane potential opposing further acidification. The membrane potential can be dissipated by the influx of permeant external anions or efflux of internal alkali cations. Replacement externally of permeable anions with less permeable anions (e.g. replacing Cl- with gluconate) diminished acidification, as did replacement internally of a more permeant cation K+ with less permeant species (such as Na+ or tetramethylammonium). ATP-dependent H+ transport was not coupled to any specific anion or cation, however. The endosomal membrane was found to be extremely permeable to protons, with protons able to leak out almost as fast as they are pumped in. Thus, the internal pH of endosomes is likely to reflect a dynamic equilibrium of protons regulated by the intrinsic ion permeabilities of the endosomal membrane, in addition to the activity of an ATP-driven proton pump.  相似文献   

2.
Na+,K(+)-ATPase has been observed to partially inhibit acidification of early endosomes by increasing membrane potential, whereas chloride channels have been observed to enhance acidification in endosomes and lysosomes. However, little theoretical analysis of the ways in which different pumps and channels may interact has been carried out. We therefore developed quantitative models of endosomal pH regulation based on thermodynamic considerations. We conclude that 1) both size and shape of endosomes will influence steady-state endosomal pH whenever membrane potential due to the pH gradient limits proton pumping, 2) steady-state pH values similar to those observed in early endosomes of living cells can occur in endosomes containing just H(+)-ATPases and Na+,K(+)-ATPases when low endosomal buffering capacities are present, and 3) inclusion of active chloride channels results in predicted pH values well below those observed in vivo. The results support the separation of endocytic compartments into two classes, those (such as early endosomes) whose acidification is limited by attainment of a certain membrane potential, and those (such as lysosomes) whose acidification is limited by the attainment of a certain pH. The theoretical framework and conclusions described are potentially applicable to other membrane-enclosed compartments that are acidified, such as elements of the Golgi apparatus.  相似文献   

3.
Kanwar R  Fortini ME 《Cell》2008,133(5):852-863
Activity of the big brain (bib) gene influences Notch signaling during Drosophila nervous system development. We demonstrate that Bib, which belongs to the aquaporin family of channel proteins, is required for endosome maturation in Drosophila epithelial cells. In the absence of Bib, early endosomes arrest and form abnormal clusters, and cells exhibit reduced acidification of endocytic trafficking organelles. Bib acts downstream of Hrs in early endosome morphogenesis and regulates biogenesis of endocytic compartments prior to the formation of Rab7-containing late endosomes. Abnormal endosome morphology caused by loss of Bib is accompanied by overaccumulation of Notch, Delta, and other signaling molecules as well as reduced intracellular trafficking of Notch to nuclei. Analysis of several endosomal trafficking mutants reveals a correlation between endosomal acidification and levels of Notch signaling. Our findings reveal an unprecedented role for an aquaporin in endosome maturation, trafficking, and acidification.  相似文献   

4.
During endocytosis in Chinese hamster ovary (CHO) cells, Semliki Forest virus (SFV) passes through two distinct subpopulations of endosomes before reaching lysosomes. One subpopulation, defined by cell fractionation using free flow electrophoresis as "early endosomes," constitutes the major site of membrane and receptor recycling; while "late endosomes," an electrophoretically distinct endosome subpopulation, are involved in the delivery of endosomal content to lysosomes. In this paper, the pH-sensitive conformational changes of the SFV E1 spike glycoprotein were used to study the acidification of these defined endosome subpopulations in intact wild-type and acidification-defective CHO cells. Different virus strains were used to measure the kinetics at which internalized SFV was delivered to endosomes of pH less than or equal to 6.2 (the pH at which wild-type E1 becomes resistant to trypsin digestion) vs. endosomes of pH less than or equal to 5.3 (the threshold pH for E1 of the SFV mutant fus-1). By correlating the kinetics of acquisition of E1 trypsin resistance with the transfer of SFV among distinct endosome subpopulations defined by cell fractionation, we found that after a brief residence in vesicles of relatively neutral pH, internalized virus encountered pH less than or equal to 6.2 in early endosomes with a t1/2 of 5 min. Although a fraction of the virus reached a pH of less than or equal to 5.3 in early endosomes, most fus-1 SFV did not exhibit the acid-induced conformational change until arrival in late endosomes (t1/2 = 8-10 min). Thus, acidification of both endosome subpopulations was heterogeneous. However, passage of SFV through a less acidic early endosome subpopulation always preceded arrival in the more acidic late endosome subpopulation. In mutant CHO cells with temperature-sensitive defects in endosome acidification in vitro, acidification of both early and late endosomes was found to be impaired at the restrictive temperature (41 degrees C). The acidification defect was also found to be partially penetrant at the permissive temperature, resulting in the inability of any early endosomes in these cells to attain pH less than or equal to 5.3. In vitro studies of endosomes isolated from mutant cells suggested that the acidification defect is most likely in the proton pump itself. In one mutant, this defect resulted in increased sensitivity of the electrogenic H+ pump to fluctuations in the endosomal membrane potential.  相似文献   

5.
The mannose receptor mediates the transport of high-mannose glycoproteins from the cell surface to lysosomes in macrophages. The binding of ligand to the receptor is dependent on both pH and Ca2+. Upon internalization, ligands enter an acidic pre-lysosomal compartment where receptor-ligand dissociation takes place. Acidification is driven by an endosomal proton pump and anion transport is coupled to this acidification step. A permeabilized-cell assay has been designed to characterize the ionic requirements for receptor-ligand dissociation in endosomes. The plasma membrane of macrophages has been permeabilized selectively with digitonin without affecting endosomal membranes. Receptor-ligand dissociation in permeabilized cells required ATP and was blocked by proton ionophores. Di-isothiocyanostilbene-disulphonic acid and N-ethylmaleimide also blocked dissociation, but mitochondrial ATPase inhibitors and vanadate were ineffective. To explore the nature of the anion requirement for acidification, the ability of different anions to compensate for Cl- was tested. For the halide series, Br- was as equally effective as Cl- in supporting receptor-ligand dissociation, but I- was inhibitory. Citrate and gluconate were only partially effective, while SO4(2-), NO3- and PO4(2-) blocked dissociation. Addition of Ca2+ to permeabilized-cell preparations impaired ATP-dependent dissociation without affecting endosome acidification. These results suggest that the endosomal membrane has a Ca2+ conductance that would permit the rapid efflux of Ca2+ from endosomes during acidification, and this would appear to be a necessary step for efficient sorting of Ca2+-dependent receptors from their ligands.  相似文献   

6.
Mucolipin-3 (MCOLN3) is a pH-regulated Ca(2+) channel that localizes to the endosomal pathway. Gain-of-function mutation in MCOLN3 causes the varitint-waddler (Va) phenotype in mice, which is characterized by hearing loss, vestibular dysfunction, and coat color dilution. The Va phenotype results from a punctual mutation (A419P) in the pore region of MCOLN3 that locks the channel in an open conformation causing massive entry of Ca(2+) inside cells and inducing cell death by apoptosis. Overexpression of wild-type MCOLN3 produces severe alterations of the endosomal pathway, including enlargement and clustering of endosomes, delayed EGF receptor degradation, and impaired autophagosome maturation, thus suggesting that MCOLN3 plays an important role in the regulation of endosomal function. To understand better the physiological role of MCOLN3, we inhibited MCOLN3 function by expression of a channel-dead dominant negative mutant (458DD/KK) or by knockdown of endogenous MCOLN3. Remarkably, we found that impairment of MCOLN3 activity caused a significant accumulation of luminal Ca(2+) in endosomes. This accumulation led to severe defects in endosomal acidification as well as to increased endosomal fusion. Our findings reveal a prominent role for MCOLN3 in regulating Ca(2+) homeostasis at the endosomal pathway and confirm the importance of luminal Ca(2+) for proper acidification and membrane fusion.  相似文献   

7.
Although Ca(2+) release from early endosomes (EE) is important for the fusion of primary endosomes, the presence of an ion channel responsible for releasing calcium from the EE has not been shown. A recent proteomics study has identified the TRPV2 channel protein in EE, suggesting that transient receptor potential-like Ca(2+) channels may be in endosomes. The submicron size of endosomes has made it difficult to study their ion channels in the past. We have overcome this problem by generating enlarged EE with the help of a hydrolysis-deficient SKD1/VPS4B mutant in HEK293 cells. Here we report the first patch clamp recording of a novel endosome calcium channel (ECC) in these enlarged EE. The ECC shows a similar pharmacology to that of the TRPV2 channel. In addition, the ECC has a unique chloride-dependent regulation; it is inhibited by the endosome luminal chloride with a K(50) of 82 mm.  相似文献   

8.
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.  相似文献   

9.
Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.  相似文献   

10.
The anti-malaria drug primaquine is a weak base which accumulates in endosomes in a protonated form and consequently neutralises the endosomal pH. Bafilomycin A1 prevents endosome acidification by inhibiting the vacuolar proton pump. Although both agents neutralise the endosomal pH, only primaquine has a strong inhibitory effect on recycling of endocytosed proteins to the plasma membrane (Van Weert et al. (1995), J. Cell Biol. 130, 821-834). This suggests that primaquine interferes with a parameter, other than endosomal pH, that is essential for membrane recycling. In the presence of 0.3 mM primaquine, endocytosed transferrin-receptors accumulated intracellularly, but not in the additional presence of bafilomycin A1. Thus, at relative low concentrations proton pump-driven accumulation of primaquine in endosomes was required to inhibit membrane recycling, suggesting that the target of primaquine is associated with endosomes. The inhibitory effect of 1 mM primaquine on transferrin receptor recycling was not reversed by the additional presence of bafilomycin A1, indicating that osmotic swelling of endosomes due to accumulation of protonated primaquine could also not explain its effect. To study endosome swelling morphologically, we introduce a novel technique for fluorescent labelling of endosomes involving HRP-catalysed biotinylation. In the presence of 0.2 mM primaquine endosomal vacuoles with diameters up to 2 microm were observed. Endosome swelling was not observed when in addition to primaquine also bafilomycin A1 was present, supporting the notion that vacuolar proton pump activity lowers the dose response for primaquine. Factors that are crucial for membrane recycling and may be affected by primaquine are discussed.  相似文献   

11.
Members of the ubiquitously expressed CLC protein family of chloride channels and transporters play important roles in regulating cellular chloride and pH. The CLCs that function as Cl(-)/H(+) antiporters, ClCs 3-7, are essential in particular for the acidification of endosomal compartments and protein degradation. These proteins are broadly expressed in the nervous system, and mutations that disrupt their expression are responsible for several human genetic diseases. Furthermore, knock-out of ClC3 and ClC7 in the mouse result in the degeneration of the hippocampus and the retina. Despite this evidence of their importance in retinal function, the expression patterns of different CLC transporters in different retinal cell types are as yet undescribed. Previous work in our lab has shown that in chicken amacrine cells, internal Cl(-) can be dynamic. To determine whether CLCs have the potential to participate, we used PCR and immunohistochemical techniques to examine CLC transporter expression in the chicken retina. We observed a high level of variation in the retinal expression levels and patterns among the different CLC proteins examined. These findings, which represent the first systematic investigation of CLC transporter expression in the retina, support diverse functions for the different CLCs in this tissue.  相似文献   

12.
Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to defective Cl- conductance in epithelial cells. While the CFTR gene product has been detected in the plasma membrane, its presence and functional role in the membranes of intracellular compartments remain to be established. The purpose of the present experiments was to functionally localize CFTR in the endosomal membrane and to test the role of the associated Cl- conductance in the regulation of endosomal pH (pH(en)). When using conductive protonophores, the net H+ flux across the endosomal membrane of Chinese hamster ovary (CHO) cells is limited by the movement of counterions. Thus, ionic permeability could be estimated indirectly, from the changes in pH(en) determined fluorimetrically. Measurements in situ and in a cell-free microsomal preparation indicate the presence of a protein kinase A (PKA)-activated anion conductance in endosomes from CHO cells transfected with CFTR, but not in endosomes from wild-type or mock-transfected cells. In endosomes isolated from CFTR-expressing cells, the stimulatory effect of PKA was diminished by a specific peptide inhibitor of PKA, by alkaline phosphatase treatment or by a monoclonal antibody against the second nucleotide binding fold of CFTR. Increasing counterion permeability by phosphorylation of CFTR or by addition of valinomycin failed to alter the rate or extent of endosomal acidification in situ. Our observations indicate that functional CFTR, susceptible to activation by PKA, is present in endosomes of transfected CHO cells. More importantly, the data suggest that factors other than counterion permeability are the major determinants of pH(en).  相似文献   

13.
Mesaki K  Tanabe K  Obayashi M  Oe N  Takei K 《PloS one》2011,6(5):e19764
The early endosome acts as a sorting station for internalized molecules destined for recycling or degradation. While recycled molecules are sorted and delivered to tubular endosomes, residual compartments containing molecules to be degraded undergo "maturation" before final degradation in the lysosome. This maturation involves acidification, microtubule-dependent motility, and perinuclear localization. It is currently unknown how sorting and the processes of maturation cooperate with each other. Here, we show that fission of a tubular endosome triggers the maturation of the residual endosome, leading to degradation. Use of the dynamin inhibitor dynasore to block tubular endosome fission inhibited acidification, endosomal motility along microtubules, perinuclear localization, and degradation. However, tubular endosome fission was not affected by inhibiting endosomal acidification or by depolymerizing the microtubules. These results demonstrate that the fission of recycling tubules is the first important step in endosomal maturation and degradation in the lysosome. We believe this to be the first evidence of a cascade from sorting to degradation.  相似文献   

14.
The relationship between endosomal pH and function is well documented in viral entry, endosomal maturation, receptor recycling, and vesicle targeting within the endocytic pathway. However, specific molecular mechanisms that either sense or regulate luminal pH to mediate these processes have not been identified. Herein we describe the use of novel, compartment-specific pH indicators to demonstrate that yeast Nhx1, an endosomal member of the ubiquitous NHE family of Na+/H+ exchangers, regulates luminal and cytoplasmic pH to control vesicle trafficking out of the endosome. Loss of Nhx1 confers growth sensitivity to low pH stress, and concomitant acidification and trafficking defects, which can be alleviated by weak bases. Conversely, weak acids cause wild-type yeast to present nhx1Delta trafficking phenotypes. Finally, we report that Nhx1 transports K+ in addition to Na+, suggesting that a single mechanism may responsible for both pH and K+-dependent endosomal processes. This presents the newly defined family of eukaryotic endosomal NHE as novel targets for pharmacological inhibition to alleviate pathological states associated with organellar alkalinization.  相似文献   

15.
Autophagy, an intracellular degradative pathway, maintains cell homeostasis under normal and stress conditions. Nascent double-membrane autophagosomes sequester and enclose cytosolic components and organelles, and subsequently fuse with the endosomal pathway allowing content degradation. Autophagy requires fusion of autophagosomes with late endosomes, but it is not known if fusion with early endosomes is essential. We show that fusion of AVs with functional early endosomes is required for autophagy. Inhibition of early endosome function by loss of COPI subunits (β′, β, or α) results in accumulation of autophagosomes, but not an increased autophagic flux. COPI is required for ER-Golgi transport and early endosome maturation. Although loss of COPI results in the fragmentation of the Golgi, this does not induce the formation of autophagosomes. Loss of COPI causes defects in early endosome function, as both transferrin recycling and EGF internalization and degradation are impaired, and this loss of function causes an inhibition of autophagy, an accumulation of p62/SQSTM-1, and ubiquitinated proteins in autophagosomes.  相似文献   

16.
17.
The Wnt pathway, which controls crucial steps of the development and differentiation programs, has been proposed to influence lipid storage and homeostasis. In this paper, using an unbiased strategy based on high-content genome-wide RNAi screens that monitored lipid distribution and amounts, we find that Wnt3a regulates cellular cholesterol. We show that Wnt3a stimulates the production of lipid droplets and that this stimulation strictly depends on endocytosed, LDL-derived cholesterol and on functional early and late endosomes. We also show that Wnt signaling itself controls cholesterol endocytosis and flux along the endosomal pathway, which in turn modulates cellular lipid homeostasis. These results underscore the importance of endosome functions for LD formation and reveal a previously unknown regulatory mechanism of the cellular programs controlling lipid storage and endosome transport under the control of Wnt signaling.  相似文献   

18.
We investigated the involvement of ClC-3 chloride channels in endosomal acidification by measurement of endosomal pH and chloride concentration [Cl-] in control versus ClC-3-deficient hepatocytes and in control versus ClC-3-transfected Chinese hamster ovary cells. Endosomes were labeled with pH or [Cl-]-sensing fluorescent transferrin (Tf), which targets to early/recycling endosomes, or alpha2-macroglobulin (alpha2M), which targets to late endosomes. In pulse label-chase experiments, [Cl-] was 19 mM just after internalization in alpha2M-labeled endosomes in primary cultures of hepatocytes from wild-type mice, increasing to 58 mM over 45 min, whereas pH decreased from 7.1 to 5.4. Endosomal acidification and [Cl-] accumulation were significantly impaired in hepatocytes from ClC-3 knock-out mice, with [Cl-] increasing from 16 to 43 mM and pH decreasing from 7.1 to 6.0. Acidification and Cl- accumulation were blocked by bafilomycin. In Tf-labeled endosomes, [Cl-] was 46 mM in wild-type versus 35 mM in ClC-3-deficient hepatocytes at 15 min after internalization, with corresponding pH of 6.1 versus 6.5. Approximately 4-fold increased Cl- conductance was found in alpha2M-labeled endosomes isolated from hepatocytes of wild-type versus ClC-3 null mice. In contrast, Golgi acidification was not impaired in ClC-3-deficient hepatocytes. In transfected Chinese hamster ovary cells expressing ClC-3A, endosomal acidification and [Cl-] accumulation were enhanced. [Cl-] in alpha2M-labeled endosomes was 42 mM (control) versus 53 mM (ClC-3A) at 45 min, with corresponding pH 5.8 versus 5.2; [Cl-] in Tf-labeled endosomes at 15 min was 37 mM (control) versus 49 mM (ClC-3A) with pH 6.3 versus 5.9. Our results provide direct evidence for involvement of ClC-3 in endosomal acidification by Cl- shunting of the interior-positive membrane potential created by the vacuolar H+ pump.  相似文献   

19.
A novel long wavelength fluorescent Cl(-) indicator was used to test whether endosomal Cl(-) conductance provides the principal electrical shunt to permit endosomal acidification. The green fluorescent Cl(-)-sensitive chromophore 10,10'-bis[3-carboxypropyl]-9,9'-biacridinium dinitrate (BAC) was conjugated to aminodextran together with the red fluorescent Cl(-)-insensitive chromophore tetramethylrhodamine (TMR). BAC fluorescence is pH-insensitive and quenched by Cl(-) with a Stern-Volmer constant of 36 m(-1). Endosomes in J774 and Chinese hamster ovary (CHO) cells were pulse-labeled with BAC-TMR-dextran by fluid-phase endocytosis. Endosomal [Cl(-)] increased over 45 min from 17 to 53 mm in J774 cells and from 28 to 73 mm in CHO cells, during which time endosomal pH decreased from 6.95 to 5.30 (J774) and 6.92 to 5.60 (CHO). The acidification and increased [Cl(-)] were blocked by bafilomycin. Together with ion substitution and buffer capacity measurements, we conclude that Cl(-) transport accounts quantitatively for the electrical shunt during vacuolar acidification. Measurements of relative endosomal volume by a novel ratio imaging method involving fluorescence self-quenching indicated a 2.5-fold increase in volume during early acidification and Cl(-) accumulation, which was blocked by bafilomycin. These experiments provide the first direct measurement of endosomal [Cl(-)] and indicate that endosomal acidification is accompanied by significant Cl(-) entry and volume increase.  相似文献   

20.
Charged MVB protein 5 (CHMP5) is a coiled coil protein homologous to the yeast Vps60/Mos10 gene and other ESCRT-III complex members, although its precise function in either yeast or mammalian cells is unknown. We deleted the CHMP5 gene in mice, resulting in a phenotype of early embryonic lethality, reflecting defective late endosome function and dysregulation of signal transduction. Chmp5-/- cells exhibit enlarged late endosomal compartments that contain abundant internal vesicles expressing proteins that are characteristic of late endosomes and lysosomes. This is in contrast to ESCRT-III mutants in yeast, which are defective in multivesicular body (MVB) formation. The degradative capacity of Chmp5-/- cells was reduced, and undigested proteins from multiple pathways accumulated in enlarged MVBs that failed to traffic their cargo to lysosomes. Therefore, CHMP5 regulates late endosome function downstream of MVB formation, and the loss of CHMP5 enhances signal transduction by inhibiting lysosomal degradation of activated receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号