首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named “operon-extension” vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5′-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5′-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named “split” plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.  相似文献   

2.
Methods to avoid the presence of selectable marker genes (SMG) in transgenic plants are available but not implemented in many crop species. We assessed the efficiency of simple marker-free Agrobacterium-mediated transformation techniques in alfalfa: regeneration without selection, or marker-less, and co-transformation with two vectors, one containing the SMG and one containing a non-selected gene. To easily estimate the efficiency of marker-less transformation, the nptII and the GUS markers were used as non-selected genes. After Agrobacterium treatment, somatic embryos were regenerated without selection. The percentage of transgenic embryos was determined by a second cycle of regeneration using the embryos as starting material, in the presence of kanamycin, by PCR screening of T1 progenies, and by the GUS test. In two experiments, from 0 to 1.7% of the somatic embryos were transgenic. Co-transformation was performed with two vectors, one with the hemL SMG and one with the unselected nptII gene, each carried by a different culture of Agrobacterium. Only 15 putative co-transformed plants were regenerated from two experiments, with an average co-transformation percentage of 3.7. Southern blot hybridizations and/or T(1) progeny segregation were used to confirm transgene integration, and qPCR was also used to estimate the T-DNA copy number. In the T(1) progenies obtained by crossing with a non-transgenic pollinator, marker-free segregants were obtained. Both marker-free approaches showed very low efficiency.  相似文献   

3.
The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide‐insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low‐level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co‐transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high‐throughput genetic transformation of plants and algae.  相似文献   

4.
We developed a practical and efficient gene transfer system for indica rice utilizing mature-seed derived explants and a simple bombardment device which uses compressed helium for accelerating DNA-coated metal particles. Unlike instruments which have been described in the literature previously, this new bombardment device, which is an improvement of the particle inflow concept, does not require vacuum. This attribute simplifies the transformation procedure significantly and it makes rice transformation technology accessible to laboratories which may not have the resources to invest in more expensive particle bombardment instruments. We determined experimentally that we could recover transgenic rice plants utilizing three different particle bombardment instruments at comparable frequencies.  相似文献   

5.
Plant genetic engineering is one of the key technologies for crop improvement as well as an emerging approach for producing recombinant proteins in plants. Both plant nuclear and plastid genomes can be genetically modified, yet fundamental functional differences between the eukaryotic genome of the plant cell nucleus and the prokaryotic-like genome of the plastid will have an impact on key characteristics of the resulting transgenic organism. So, which genome, nuclear or plastid, to transform for the desired transgenic phenotype? In this review we compare the advantages and drawbacks of engineering plant nuclear and plastid genomes to generate transgenic plants with the traits of interest, and evaluate the pros and cons of their use for different biotechnology and basic research applications, ranging from generation of commercial crops with valuable new phenotypes to ‘bioreactor’ plants for large-scale production of recombinant proteins to research model plants expressing various reporter proteins.  相似文献   

6.
Technical enzymes are used in many industrial applications. Nowadays technical enzymes are often produced in transgenic host organisms. The use of transgenic plants with respect to high level of expression at low costs as a prerequisite for successful commercial production of technical enzymes is discussed. This review summarises recently published examples for production of technical enzymes in plants. In addition, plastid transformation and viral vectors are discussed as methods which might be useful for obtaining high expression level of recombinant proteins in plants.  相似文献   

7.
aroA-In融合基因载体的构建、表达及对烟草的转化   总被引:3,自引:0,他引:3  
赵瑾  高素琴  费云标  魏令波 《遗传学报》2004,31(11):1294-1301
PCR扩增突变的5’-烯醇丙酮酸莽草酸-3-磷酸合成酶(5’-enolpyruvylshikimate-3-phosphate synthetase,EPSPS)cDNA全长序列,插入pLitmus28得到pLEPSPS,进而通过反向PCR在EPSPS235/236aa之间将其打断为无功能的片段。选用人工构建的具有顺式和反式剪接功能的mini型蛋白内含子Ssp DnaB和Rma DnaB,插入被打断的aroA(抗除草剂基因),构建了质粒pLEBC、pLEBT、pLERC和pLERT。将4种重组质粒中的aroA-In(蛋白内含子Intein插入aroA)融合基因插入pET-32得到表达载体pETLEBC、pETLEBT、pETLERC和pETLERT,lPTG诱导后,SDS-PAGE分析显示其能在DE。中有效表达并发生相应的蛋白剪接。将aroA-cis Ssp DnaB和aroA-cis Rma DnaB融合基因分别插入pLYM中进一步构建成植物表达载体,农杆菌叶盘法转化烟草。基因组PCR分析表明融合基因整合入植物核基因组;RT-PCR分析显示其可在高等植物细胞中成功表达。结果说明蛋白内含子基因可以转化高等真核细胞,蛋白剪接技术可应用于高等植物细胞,从而为防止植物转基因扩散提供了一条新的途径。  相似文献   

8.
9.
Many systems have been developed for the removal of a selection marker in order to generate marker-free transgenic plants. These systems consist of (1) a site-specific recombination system (Cre/lox) or a phage-attachment region (attP) to remove the selectable marker gene and (2) a transposable element system (Ac) or a co-transformation system to segregate the gene of interest from the selectable marker gene. Overall, the process is more time-consuming than conventional transformation methods because two rounds of transformation - two steps of regeneration or sexual crossings - are required to obtain the desired transgenic plants. Recently, removal systems combined with a positive marker, denoted as MAT vectors, have been developed to save time and effort by generating marker-free transgenic plants through a single-step transformation. We summarize here the transformation procedures using these systems and discuss their feasibility for practical use.  相似文献   

10.
Transgenic loci obtained after Agrobacterium tumefaciens -mediated transformation can be simple, but fairly often they contain multiple T-DNA copies integrated into the plant genome. To understand the origin of complex T-DNA loci, floral-dip and root transformation experiments were carried out in Arabidopsis thaliana with mixtures of A. tumefaciens strains, each harboring one or two different T-DNA vectors. Upon floral-dip transformation, 6–30% of the transformants were co-transformed by multiple T-DNAs originating from different bacteria and 20–36% by different T-DNAs from one strain. However, these co-transformation frequencies were too low to explain the presence of on average 4–6 T-DNA copies in these transformants, suggesting that, upon floral-dip transformation, T-DNA replication frequently occurs before or during integration after the transfer of single T-DNA copies. Upon root transformation, the co-transformation frequencies of T-DNAs originating from different bacteria were similar or slightly higher (between 10 and 60%) than those obtained after floral-dip transformation, whereas the co-transformation frequencies of different T-DNAs from one strain were comparable (24–31%). Root transformants generally harbor only one to three T-DNA copies, and thus co-transformation of different T-DNAs can explain the T-DNA copy number in many transformants, but T-DNA replication is postulated to occur in most multicopy root transformants. In conclusion, the comparable co-transformation frequencies and differences in complexity of the T-DNA loci after floral-dip and root transformations indicate that the T-DNA copy number is highly determined by the transformation-competent target cells.  相似文献   

11.
Although several induction systems have been described for plants containing transgenes in the nucleus, to date there is only one method for controlling transgene expression in plastids. This consists of chemical induction of a nuclear gene and import of the gene product into plastids, so that transformation of two cellular compartments is required. Here we describe a system for external control of plastid gene expression which is based entirely on plastid components and can therefore be established in a single transformation step. Our system uses modified promoters containing binding sites for the bacterial lac repressor. Chemical induction can be made with intact plants or after harvesting, which provides ecological and economic benefits.  相似文献   

12.
Asexual reproduction is believed to be detrimental, mainly because of the accumulation of deleterious mutations over time, a hypothesis known as Muller's ratchet. In seed plants, most asexually reproducing genetic systems are polyploid, with apomictic species (plants forming seeds without fertilization) as well as plastids and mitochondria providing prominent examples. Whether or not polyploidy helps asexual genetic systems to escape Muller's ratchet is unknown. Gene conversion, particularly when slightly biased, represents a potential mechanism that could allow asexual genetic systems to reduce their mutation load in a genome copy number-dependent manner. However, direct experimental evidence for the operation of gene conversion between genome molecules to correct mutations is largely lacking. Here we describe an experimental system based on transgenic tobacco chloroplasts that allows us to analyze gene conversion events in higher plant plastid genomes. We provide evidence for gene conversion acting as a highly efficient mechanism by which the polyploid plastid genetic system can correct deleterious mutations and make one good genome out of two bad ones. Our finding that gene conversion can be biased may provide a molecular link between asexual reproduction, high genome copy numbers and low mutation rates.  相似文献   

13.
The review considers the basic strategies used to produce biologically safe marker-free transgenic plants and analyzes their advantages and disadvantages. The systems of positive and negative selection as safer approaches for transformant identification are briefly described. The application of co-transformation, transposition, and site-specific recombination for production of marker-free plants is described. Special attention is paid to novel approaches to create marker-free plants initially containing no selective genes in their genomes.  相似文献   

14.
由于关系到转基因植物的产业化前景,安全型转基因植物培育越来越受到公众的关注。在植物遗传转化体系中,绝大多数选择标记基因来源于细菌,对人类健康和环境安全存在潜在风险,因此无选择标记转基因植物培育受到科研工作者的高度重视。本文综述了安全型转基因植物的培育途径,包括共转化系统、位点特异性重组系统、转座子系统、同源重组系统、不依赖于组织培养的简易转化技术及再生相关基因利用等技术,探讨了各种途径的优缺点,以期推动安全型转基因植物培育和转基因植物产业化进程。  相似文献   

15.
建立了一种利用双T-DNA载体培育无选择标记转基因植物的方法.通过体外重组构建了双T-DNA双元载体pDLBRBbarm.载体中,选择标记nptⅡ基因和另一代表外源基因的bar基因分别位于2个独立的T-DNA.利用农杆菌介导转化烟草(Nicotiana tabacum L.),在获得的转化植株中,同时整合有nptⅡ基因和bar基因的频率为59.2%.对4个同时整合有nptⅡ和bar基因植株自交获得的T1代株系进行检测分析,发现在3个T1代株系2个T-DNA可以发生分离,其中约19.5%的转基因T1代植株中只存在bar基因而不带选择标记nptⅡ.这一结果说明双T-DNA载体系统能有效地用于培育无选择标记的转基因植物.研究还利用位于2个不同载体上的nptⅡ基因与 bar基因通过农杆菌介导共转化烟草,获得共转化植株的频率为20.0%~47.4%,低于使用双T-DNA转化的共转化频率.  相似文献   

16.
安全型转基因植物培育技术研究进展   总被引:1,自引:0,他引:1  
由于关系到转基因植物的产业化前景,安全型转基因植物培育越来越受到公众的关注。在植物遗传转化体系中,绝大多数选择标记基因来源于细菌,对人类健康和环境安全存在潜在风险,因此无选择标记转基因植物培育受到科研工作者的高度重视。本文综述了安全型转基因植物的培育途径,包括共转化系统、位点特异性重组系统、转座子系统、同源重组系统、不依赖于组织培养的简易转化技术及再生相关基因利用等技术,探讨了各种途径的优缺点,以期推动安全型转基因植物培育和转基因植物产业化进程。  相似文献   

17.
The chloroplast is a pivotal organelle in plant cells and eukaryotic algae to carry out photosynthesis, which provides the primary source of the world's food. The expression of foreign genes in chloroplasts offers several advantages over their expression in the nucleus: high-level expression, transgene stacking in operons and a lack of epigenetic interference allowing stable transgene expression. In addition, transgenic chloroplasts are generally not transmitted through pollen grains because of the cytoplasmic localization. In the past two decades, great progress in chloroplast engineering has been made. In this paper, we review and highlight recent studies of chloroplast engineering, including chloroplast transformation procedures, controlled expression of plastid transgenes in plants, the expression of foreign genes for improvement of plant traits, the production of biopharmaceuticals, metabolic pathway engineering in plants, plastid transformation to study RNA editing, and marker gene excision system.  相似文献   

18.
Rubisco is a hexadecameric enzyme composed of two subunits: a small subunit (SSU) encoded by a nuclear gene (rbcS), and a large subunit (LSU) encoded by a plastid gene (rbcL). Due to its high abundance, Rubisco represents an interesting target to express peptides or small proteins as fusion products at high levels. In an attempt to modify the plant metal content, a polyhistidine sequence was fused to Rubisco, the most abundant protein of plants. Plastid transformation was used to express a polyhistidine (6x) fused to the C-terminal extremity of the tobacco LSU. Transplastomic tobacco plants were generated by cotransformation of polyethylene glycol-treated protoplasts using two vectors: one containing the 16SrDNA marker gene, conferring spectinomycin resistance, and the other the polyhistidine-tagged rbcL gene. Homoplasmic plants containing L8-(His)6S8 as a single enzyme species were obtained. These plants contained normal Rubisco amounts and activity and displayed normal photosynthetic properties and growth. Interestingly, transplastomic plants accumulated higher zinc amounts than the wild-type when grown on zinc-enriched media. The highest zinc increase observed exceeded the estimated chelating ability of the polyhistidine sequence, indicating a perturbation in intracellular zinc homeostasis. We discuss the possibility of using Rubisco to express foreign peptides as fusion products and to confer new properties to higher plants.  相似文献   

19.
Plastid marker-gene excision by transiently expressed CRE recombinase   总被引:8,自引:0,他引:8  
We report plastid marker-gene excision with a transiently expressed CRE, site-specific recombinase. This is a novel protocol that enables rapid removal of marker genes from the approximately 10,000 plastid genome copies without transformation of the plant nucleus. Plastid marker excision was tested in tobacco plants transformed with a prototype polycistronic plastid vector, pPRV110L, designed to express multiple genes organized in an operon. The pMHB10 and pMHB11 constructs described here are dicistronic and encode genes for herbicide (bar) and spectinomycin (aadA) resistance. In vector pMHB11, expression of herbicide resistance is dependent on conversion of an ACG codon to an AUG translation initiation codon by mRNA editing, a safety feature that prevents translation of the mRNA in prokaryotes and in the plant nucleus. In the vectors, the marker gene (aadA) is flanked by 34-bp loxP sites for excision by CRE. Marker excision by a transiently expressed CRE involves introduction of CRE in transplastomic leaves by agro-infiltration, followed by plant regeneration. In tobacco transformed with vectors pMHB10 and pMHB11, Southern analysis and PCR identified approximately 10% of the regenerated plants as marker-free.  相似文献   

20.
Conventional Agrobacterium-mediated plant transformation often produces a significant frequency of transgenic events containing vector backbone sequence, which is generally undesirable for biotechnology applications. We tested methods to reduce the frequency of transgenic plants containing vector backbone by incorporating genes into the backbone that inhibit the development of transgenic plants. Four backbone frequency reduction genes, bacterial levansucrase (sacB), maize cytokinin oxidase (CKX), Phaseolus GA 2-oxidase (GA 2-ox), and bacterial phytoene synthase (crtB), each expressed by the enhanced CaMV 35S promoter, were placed individually in a binary vector backbone near the left border (LB) of binary vectors. In transformed soybean plants, the lowest frequency of backbone presence was observed when the constitutively expressed CKX gene was used, followed by crtB. Higher backbone frequencies were found among the plants transformed with the GA 2-oxidase and sacB vectors. In some events, transfer of short backbone fragments appeared to be caused by LB readthrough and termination within the backbone reduction gene. To determine the effect of the backbone genes on transformation frequency, the crtB and CKX vectors were then compared to a control vector in soybean transformation experiments. The results revealed that there was no significant transformation frequency difference between the crtB and control vectors, but the CKX vector showed a significant transformation frequency decrease. Molecular analysis revealed that the frequency of transgenic plants containing one or two copies of the transgene and free of backbone was significantly increased by both the CKX and crtB backbone reduction vectors, indicating that there may be a correlation between transgene copy number and backbone frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号