首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteogenesis imperfecta (OI) is a generalised disorder of connective tissue characterised by an increased fragility of bones and also manifested in other tissues containing collagen type I, by blue sclera, hearing loss, dentinogenesis imperfecta, hyperextensible joints, hernias and easy bruising. OI is dominantly inherited and results in >90% OI cases, caused by mutations in one of the two genes COL1A1 or COL1A2 coding for type I procollagen. The Lithuanian OI database comprises 147 case records covering the period of 1980 - 2001. Clinical and genealogical analysis of OI cases/families from Lithuania available for examination revealed 18 familial cases of OI type I and 22 sporadic cases: OI type II (3 cases), OI type III (11 cases) and OI type I (8 cases). As a result of their molecular genetic investigation, 11 mutations were identified in the COL1A1 gene in 13 unrelated patients. Of them, nine mutations (E500X, G481A, c.2046insCTCTCTAG, c.1668delT, c.1667insC, c.4337insC, IVS19+1G > A, IVS20-2A > G, IVS22-1G > T) appeared to be novel, i.e. not yet registered in the Human Type I and Type III Collagen Mutations Database (http://www.le.ac.uk/genetics/collagen).  相似文献   

2.
The segregation of COL1A1 and COL1A2, the two genes which encode the chains of type I collagen, was analyzed in 38 dominant osteogenesis imperfecta (OI) pedigrees by using polymorphic markers within or close to the genes. This was done in order to estimate the consistency of linkage of OI genes to these two loci. None of the 38 pedigrees showed evidence of recombination between the OI gene and both collagen loci, suggesting that the frequency of unlinked loci in the population must be low. From these results, approximate 95% confidence limits for the proportion of families linked to the type I collagen genes can be set between .91 and 1.00. This is high enough to base prenatal diagnosis of dominantly inherited OI on linkage to these genes even in families which are too small for the linkage to be independently confirmed to high levels of significance. When phenotypic features were compared with the concordant collagen locus, all eight pedigrees with Sillence OI type IV segregated with COL1A2. On the other hand, Sillence OI type I segregated with both COL1A1 (17 pedigrees) and COL1A2 (7 pedigrees). The concordant locus was uncertain in the remaining six OI type I pedigrees. Of several other features, the presence or absence of presenile hearing loss was the best predictor of the mutant locus in OI type I families, with 13 of the 17 COL1A1 segregants and none of the 7 COL1A2 segregants showing this feature.  相似文献   

3.
4.
Nucleotide sequences of exon 51, adjacent intron areas, and regulatory region of the alpha1 chain of type I collagen (COL1A1) gene were analyzed in 41 patients with osteogenesis imperfecta (OI) from 33 families and their 68 relatives residing at Bashkortostan Republic (BR). Six mutations (four nonsense mutations c.967G > T (p.Gly323X), c.1081C > T (p.Arg361X), c.1243C > T (p.Arg415X), and c.2869C > T (p.Gln957X)) in patients of the Russian origin and two mutations with open reading frame shift c.579delT (p.Gly194ValfsX71), and c.2444delG (p.Gly815AlafsX293)) in patients with OI of Tatar ethnicity as well as 14 single nucleotide polymorphisms in the COL1A1 gene were revealed. Mutations c.967G > T (p.Gly323X) and three alterations in the nucleotide sequence c.544-24C > T, c.643-36delT, and c.957 + 10insA were described for the first time.  相似文献   

5.
Although >90% of patients with osteogenesis imperfecta (OI) have been estimated to have mutations in the COL1A1 and COL1A2 genes for type I procollagen, mutations have been difficult to detect in all patients with the mildest forms of the disease (i.e., type I). In this study, we first searched for mutations in type I procollagen by analyses of protein and mRNA in fibroblasts from 10 patients with mild OI; no evidence of a mutation was found in 2 of the patients by the protein analyses, and no evidence of a mutation was found in 5 of the patients by the RNA analyses. We then searched for mutations in the original 10 patients and in 5 additional patients with mild OI, by analysis of genomic DNA. To assay the genomic DNA, we established a consensus sequence for the first 12 kb of the COL1A1 gene and for 30 kb of new sequences of the 38-kb COL1A2 gene. The sequences were then used to develop primers for PCR for the 103 exons and exon boundaries of the two genes. The PCR products were first scanned for heteroduplexes by conformation-sensitive gel electrophoresis, and then products containing heteroduplexes were sequenced. The results detected disease-causing mutations in 13 of the 15 patients and detected two additional probable disease-causing mutations in the remaining 2 patients. Analysis of the data developed in this study and elsewhere revealed common sequences for mutations causing null alleles.  相似文献   

6.
A proband with lethal osteogenesis imperfecta has been investigated for the causative defect at the levels of collagen protein, mRNA, and DNA. Analysis of type I collagen synthesized by the proband's fibroblasts showed excessive post-translational modification of alpha 1(I) chains along the entire length of the helix. Oververmodification of alpha chains could be prevented by incubation of the cells at 30 rather than 37 degrees C, and the thermal stability of the triple helix, as determined by protease digestion, was normal. RNase A cleavage of RNA:RNA hybrids formed between the proband's mRNA and antisense RNA derived from normal pro-alpha 1(I) chain cDNA clones was used to locate an abnormality to exon 43 of the proband's pro-alpha 1(I) collagen gene (COL1A1). The nucleotide sequence of the corresponding gene region showed, in one allele, the deletion of 9 base pairs, not present in either parent, within a repeating sequence of exon 43. The mutation causes the loss of one of three consecutive Gly-Ala-Pro triplets at positions 868-876, but does not otherwise disrupt the Gly-X-Y sequence. Procollagen processing in fibroblast cultures and susceptibility of the mutant collagen I to cleavage with vertebrate collagenase were normal, indicating that the slippage of collagen chains by one Gly-X-Y triplet does not abolish amino-propeptidase and collagenase cleavage sites. How the mutation produces the lethal osteogenesis imperfecta phenotype is not entirely clear; the data suggest that the interaction of alpha chains immediately prior to helix formation may be affected.  相似文献   

7.
8.
9.
Osteogenesis imperfecta (OI, also known as brittle bone disease) is caused mostly by mutations in two type Ⅰ collagen genes, COL1A1 and COL1A2 encoding the pro-α1 (Ⅰ) and pro-α2 (Ⅰ) chains of type Ⅰ collagen, respectively. Two Chinese families with autosomal dominant OI were identified and characterized. Linkage analysis revealed linkage of both families to COL1A2 on chromosome 7q21.3-q22.1. Mutational analysis was carried out using direct DNA sequence analysis. Two novel missense mutations, c.3350A>G and c.3305G>C, were identified in exon 49 of COL1A2 in the two families, respectively. The c.3305G>C mutation resulted in substitution of a glycine residue (G) by an alanine residue (A) at codon 1102 (p.G1102A), which was found to be mutated into serine (S), argine (R), aspartic acid (D), or valine (V) in other families. The c.3350A>G variant may be a de novo mutation resulting in p.Y1117C. Both mutations co-segregated with OI in respective families, and were not found in 100 normal controls. The G1102 and Y1117 residues were evolutionarily highly conserved from zebrafish to humans. Mutational analysis did not identify any mutation in the COX-2 gene (a modifier gene of OI). This study identifies two novel mutations p.G1102A and p.Y1117C that cause OI, significantly expands the spectrum of COL1A2 mutations causing OI, and has a significant implication in prenatal diagnosis of OI.  相似文献   

10.
Peng H  Zhang Y  Long Z  Zhao D  Guo Z  Xue J  Xie Z  Xiong Z  Xu X  Su W  Wang B  Xia K  Hu Z 《Gene》2012,502(2):168-171
Osteogenesis imperfect (OI) is a heritable connective tissue disorder with bone fragility as a cardinal manifestation, accompanied by short stature, dentinogenesis imperfecta, hyperlaxity of ligaments and skin, blue sclerae and hearing loss. Dominant form of OI is caused by mutations in the type I procollagen genes, COL1A1/A2. Here we identified a novel splicing mutation c.3207+1G>A (GenBank ID: JQ236861) in the COL1A1 gene that caused type I OI in a Chinese family. RNA splicing analysis proved that this mutation created a new splicing site at c.3200, and then led to frameshift. This result further enriched the mutation spectrum of type I procollagen genes.  相似文献   

11.

Background

The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI.

Methods

Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish’s osteogenesis imperfecta mutation database.

Results

The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G?>?A (p.Gly821Ser) in four unrelated patients and one, c.2005G?>?A (p.Ala669Thr), in two unrelated patients.

Conclusion

Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.
  相似文献   

12.
Summary Type I collagen chains of a proband from a family with recurrent lethal osteogenesis imperfecta (OI) migrated as a doublet when submitted to gel electrophoresis. Cyanogen bromide (CNBr) peptide mapping demonstrated that the post-translational over-modifications were initiated in 1ICB7. Chemical cleavage of cDNA-RNA heteroduplexes identified a mismatch in the 1I cDNA; this mismatch was subsequently confirmed by sequencing a 249-bp fragment amplified by the polymerase chain reaction. A G to T transition in the second base of the first codon of exon 41 resulted in the substitution of glycine 802 by valine. This mutation impaired collagen secretion by dermal fibroblasts. The over-modified chains were retained intracellularly and melted at a lower temperature than normal chains. Collagen molecules synthesized by parental fibroblasts had a normal electrophoretic mobility, but hybridization of genomic DNA with allele-specific oligonucleotides revealed the presence of the mutant allele in the mother's leukocytes. The mutation was not detected in her fibroblasts consistent with the protein data. These results support the hypothesis that somatic and germ-line mosaicism in the phenotypically normal mother explain the recurrence of OI.  相似文献   

13.
Summary Ehlers-Danlos syndrome (EDS) type I is a generalized connective tissue disorder, the major manifestations of which are soft, velvety hyperextensible skin and moderately severe joint hypermobility. The gene defect or defects causing EDS type I have not yet been defined, but previous observations suggested that the syndrome may be caused by mutations in the genes for type-I collagen (COL1A1 and COL1A2) or type-III collagen (COL3A1). Here, we performed linkage studies for these three genes in large Azerbaijanian family with EDS type I. Three polymorphisms in the COL3A1 gene, two in the COL1A1 gene, and one in the COL1A2 gene were tested using the polymerase chain reaction. The data obtained excluded linkage of any of the three genes to EDS type I in the family.On leave of absence from Institute of Human Genetics, National Research Center of Medical Genetics, Moskvorechie St., 1. Moscow 115478, USSR  相似文献   

14.
15.
16.
Osteogenesis imperfecta is normally caused by an autosomal dominant mutation in the type I collagen genes COL1A1 and COL1A2. The severity of osteogenesis imperfecta varies, ranging from perinatal lethality to a very mild phenotype. Although there have been many reports of COL1A1 and COL1A2 mutations, few cases have been reported in Chinese people. We report on five unrelated families and three sporadic cases. The mutations were detected by PCR and direct sequencing. Four mutations in COL1A1 and one in COL1A2 were found, among which three mutations were previously unreported. The mutation rates of G>C at base 128 in intron 31 of the COL1A1 gene and G>A at base 162 in intron 30 of the COL1A2 gene were higher than normal. The patients' clinical characteristics with the same mutation were variable even in the same family. We conclude that mutations in COL1A1 and COL1A2 also have an important role in osteogenesis imperfecta in the Chinese population. As the Han Chinese people account for a quarter of the world's population, these new data contribute to the type I collagen mutation map.  相似文献   

17.
18.
We report here on the complete structure of the human COL3A1 and COL5A2 genes. Collagens III and V, together with collagens I, II and XI make up the group of fibrillar collagens, all of which share a similar structure and function; however, despite the similar size of the major triple-helical domain, the number of exons coding for the domain differs between the genes for the major fibrillar collagens characterized so far (I, II, and III) and the minor ones (V and XI). The main triple-helical domain being encoded by 49-50 exons, including the junction exons, in the COL5A1, COL11A1 and COL11A2 genes, but by 43-44 exons in the genes for the major fibrillar collagens. Characterization of the genomic structure of the COL3A1 gene confirmed its association with the major fibrillar collagen genes, but surprisingly, the genomic organization of the COL5A2 gene was found to be similar to that of the COL3A1 gene. We also confirmed that the two genes are located in tail-to-tail orientation with an intergenic distance of approximately 22 kb. Phylogenetic analysis suggested that they have evolved from a common ancestor gene. Analysis of the genomic sequences identified a novel single nucleotide polymorphism and a novel dinucleotide repeat. These polymorphisms should be useful for linkage analysis of the Ehlers-Danlos syndrome and related disorders.  相似文献   

19.
Osteogenesis imperfecta (OI) is a genetic disease in which the most common mutations result in substitutions for glycine residues in the triple helical domain of the chains of type I collagen. Currently there is no way to use sequence information to predict the clinical OI phenotype. However, structural models coupled with biophysical and machine learning methods may be able to predict sequences that, when mutated, would be associated with more severe forms of OI. To build appropriate structural models, we have applied a high throughput molecular dynamic approach. Homotrimeric peptides covering 57 positions in which mutations are associated with OI were simulated both with and without mutations. Our models revealed structural differences that occur with different substituting amino acids. When mutations were introduced, we observed a decrease in helix stability, as caused by fewer main chain backbone hydrogen bonds, and an increase in main chain root mean square deviation and specifically bound water molecules.  相似文献   

20.
The genes for the alpha-1 and alpha-2 chains of type IV collagen (COL4A1 and COL4A2) map to the same chromosomal band (13q34) and have a high degree of nucleotide homology. We have used pulsed field gel electrophoresis and cloned COL4A1 and COL4A2 DNA fragments as molecular probes to construct a 1200-kb macrorestriction map which encompasses both genes. The two genes are located within a 340-kb region with the 3' end of COL4A2 and the 5' region of COL4A1 separated by at least 100 kb but not more than 160 kb. These genes, therefore, are two members of a gene cluster on chromosome 13q34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号