首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Sendai virus (SeV) is an enveloped nonsegmented negative‐strand RNA virus that belongs to the genus Respirovirus of the Paramyxoviridae family. As a model pathogen, SeV has been extensively studied to define the basic biochemical and molecular biologic properties of the paramyxoviruses. In addition, SeV‐infected host cells were widely employed to uncover the mechanism of innate immune response. To identify proteins involved in the SeV infection process or the SeV‐induced innate immune response process, system‐wide evaluations of SeV–host interactions have been performed. cDNA microarray, siRNA screening and phosphoproteomic analysis suggested that multiple signaling pathways are involved in SeV infection process. Here, to study SeV–host interaction, a global quantitative proteomic analysis was performed on SeV‐infected HEK 293T cells. A total of 4699 host proteins were quantified, with 742 proteins being differentially regulated. Bioinformatics analysis indicated that regulated proteins were mainly involved in “interferon type I (IFN‐I) signaling pathway” and “defense response to virus,” suggesting that these processes play roles in SeV infection. Further RNAi‐based functional studies indicated that the regulated proteins, tripartite motif (TRIM24) and TRIM27, affect SeV‐induced IFN‐I production. Our data provided a comprehensive view of host cell response to SeV and identified host proteins involved in the SeV infection process or the SeV‐induced innate immune response process.  相似文献   

3.
Clonorchis sinensis, the Chinese liver fluke, is the causative agent of clonorchiasis as well as liver and biliary diseases. The excretory‐secretory products (ESPs) of the parasites play important roles in host–parasite interactions. In this study, we have investigated the proteome of ESPs obtained from C. sinensis adult worms. Although the full genome database of C. sinensis is not yet available, we have successfully identified 62 protein spots using 2‐DE‐based mass analysis and EST database of C. sinensis. The proteins identified include detoxification enzymes, such as glutathione S‐transferase and thioredoxin peroxidase, myoglobin and a number of cysteine proteases that are expressed abundantly. In order to identify potential targets for the diagnosis and therapy of clonorchiasis, we conducted immunoblot analysis of the ESPs proteome using the sera obtained from clonorchiasis patients and identified legumains and cysteine proteases as antigens present in the ESPs. Although the cysteine proteases were previously reported to elicit antigenicity, the legumains are found herein for the first time as a serological antigen of C. sinensis. To confirm these findings, we expressed recombinant legumain in Escherichia coli and verified that recombinant legumain also functions as a potent antigen against the sera of clonorchiasis patients. Our results illustrate the validity of immuno‐proteomic approaches in the identification of serodiagnostic antigens in the parasites.  相似文献   

4.
Soybean rust caused by Phakopsora pachyrhizi is a destructive foliar disease in nearly all soybean‐producing countries. Understanding the host responses at the molecular level is certainly essential for effective control of the disease. To identify proteins involved in the resistance to soybean rust, differential proteomic analysis was conducted in soybean leaves of a resistant genotype after P. pachyrhizi infection. A total of 41 protein spots exhibiting a fold change >1.5 between the non‐inoculated and P. pachyrhizi‐inoculated soybean leaves at 12 and 24 h postinoculation (hpi) were unambiguously identified and functionally grouped into seven categories. Twenty proteins were up‐regulated and four proteins were down‐regulated at 12 hpi, whereas 18 proteins were up‐regulated and eight proteins were down‐regulated at 24 hpi. Generally, proteins involved in photosynthesis were down‐regulated, whereas proteins associated with disease and defense response, protein folding and assembly, carbohydrate metabolism and energy production were up‐regulated. Results are discussed in terms of the functional implications of the proteins identified, with special emphasis on their putative roles in defense. Abundance changes of these proteins, together with their putative functions reveal a comprehensive picture of the host response in rust‐resistant soybean leaves and provide a useful platform for better understanding of the molecular basis of soybean rust resistance.  相似文献   

5.
Cystic hydatid disease (CHD) is caused by infection with the Echinococcus granulosus metacestode and affects both humans and livestock. In this work, we performed a proteomic analysis of the E. granulosus metacestode during infection of its intermediate bovine host. Parasite proteins were identified in different metacestode components (94 from protoscolex, 25 from germinal layer and 20 from hydatid cyst fluid), along with host proteins (58) that permeate into the hydatid cyst, providing new insights into host‐parasite interplay. E. granulosus and platyhelminth EST data allowed successful identification of proteins potentially involved in downregulation of host defenses, highlighting possible evasion mechanisms adopted by the parasite to establish infection. Several intracellular proteins were found in hydatid cyst fluid, revealing a set of newly identified proteins that were previously thought to be inaccessible for inducing or modulating the host immune response. Host proteins identified in association with the hydatid cyst suggest that the parasite may bind/adsorb host molecules with nutritional and/or immune evasion purposes, masking surface antigens or inhibiting important effector molecules of host immunity, such as complement components and calgranulin. Overall, our results provide valuable information on parasite survival strategies in the adverse host environment and on the molecular mechanisms underpinning CHD immunopathology.  相似文献   

6.
Wheat powdery mildew resistance mechanisms have been studied extensively at genomic level, however, infection induced mitochondrial proteomic changes in resistant line have not been fully characterized. Being critical organelles of chemical energy metabolism, mitochondria have also been suggested to be involved in the environmental stress response. Using proteomic approaches, we did comparative analysis of mitochondrial proteome in resistant wheat near‐isogenic line (NIL) (Brock × Jing4117) and its recurrent parent Jing 411 after infection of Blumeria graminis f.sp. tritici (Bgt). More than 50 down‐regulated mitochondrial protein spots were identified in NIL after 24‐h pathogen inoculation, and their abundance recovered to the levels prior to infection after extended inoculation (72‐h). We further analyzed a subgroup of down‐regulated proteins using mass spectrometry. MS/MS data analysis revealed the identities of nine protein spots and assigned them into three functional classes: synthesis of protein, disease resistance response and energy metabolism. For the first time we demonstrated pathogen stress induced mitochondrial proteomic changes and provided evidences that wheat powdery mildew resistance involves multiple biochemical events. Moreover, our results indicate that wheat mitochondrial proteome analysis can serve as a powerful tool to identify potential regulators of fungal invasion resistance.  相似文献   

7.
8.
Aims: For the analysis of virulence factors produced and secreted by Bacillus anthracis vegetative cells during mammalian host infection, we evaluated the secretome of B. anthracis Sterne exposed to host‐specific factors specifically to host body temperature. Methods and Results: We employed a comparative proteomics‐based approach to analyse the proteins secreted by B. anthracis Sterne under host‐specific body temperature conditions. A total of 17 proteins encoded on a single chromosome and the pXO1 plasmid were identified by peptide mass fingerprinting. Multiple algorithms were used to predict the secretion mechanisms of the detected proteins in B. anthracis. Conclusions: Several putative virulence factors and known factors responsible for sporulation were differentially regulated, including CodY, pXO1‐130 and BA1952, revealing insights into temperature cues in the B. anthracis secretome. Significance and Impact of the Study: This study identified temperature‐regulated proteins. Further studies aimed at understanding the physical and functional roles of these proteins in infection and control by elevated temperatures will contribute to detection, diagnostics and prophylaxis.  相似文献   

9.
10.
In response to different stimuli, macrophages can differentiate into either a pro‐inflammatory subtype (M1, classically activated macrophages) or acquire an anti‐inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human‐polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1‐ and M2‐polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose‐1,6‐bisphosphatase 1, a critical enzyme in gluconeogenesis, up‐regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1‐to‐M2 switch in polarization was observed. This M1‐to‐M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection.  相似文献   

11.
12.
Enteroviral myocarditis displays highly diverse clinical phenotypes ranging from mild dyspnoea or chest pain to cardiogenic shock and death. Despite detailed studies of the virus life cycle in vitro and in vivo, the molecular interplay between host and virus in disease progression is largely unresolved. Murine models of Coxsackievirus B3 (CVB3)‐induced myocarditis well mimic the human disease patterns and can thus be explored to study mechanisms leading from acute to chronic myocarditis. Here, we present a 2‐D gel‐based proteomic survey of the changes in the murine cardiac proteome that occurs following infection with CVB3. In total, 136 distinct proteins were affected. Proteins, which are involved in immunity and defense and protein metabolism/modification displayed pronounced changes in intensity not only during acute but also at later stages of CVB3 myocarditis. Proteins involved in maintenance of cell structure and associated proteins were particularly influenced in the acute phase of myocarditis, whereas reduction of levels of metabolic enzymes was observed in chronic myocarditis. Studies about changes in protein intensities were complemented by an analysis of protein phosphorylation that revealed infection‐associated changes in the phosphorylation of myosin binding protein C, atrial and ventricular isoforms of myosin regulatory light chain 2, desmin, and Rab GDP dissociation inhibitor beta‐2.  相似文献   

13.
The proteomic profiles of primary needles from Cr2-resistant and cr2-susceptible Pinus monticola seedlings were analysed post Cronartium ribicola inoculation by 2-DE. One hundred-and-five protein spots exhibiting significant differential expression were identified using LC–MS/MS. Functional classification showed that the most numerous proteins are involved in defence signalling, oxidative burst, metabolic pathways, and other physiological processes. Our results revealed that differential expression of proteins in response to C. ribicola inoculation was genotype- and infection-stage dependent. Responsive proteins in resistant seedlings with incompatible white pine blister rust (WPBR) interaction included such well-characterized proteins as heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, and intermediate factors functioning in the signal transduction pathways triggered by well-known plant R genes, as well as new candidates in plant defence like sugar epimerase, GTP-binding proteins, and chloroplastic ribonucleoproteins. Fewer proteins were regulated in susceptible seedlings; most of them were in common with resistant seedlings and related to photosynthesis among others. Quantitative RT-PCR analysis confirmed HSP- and ROS-related genes played an important role in host defence in response to C. ribicola infection. To the best of our knowledge, this is the first comparative proteomics study on WPBR interactions at the early stages of host defence, which provides a reference proteomic profile for other five-needle pines as well as resistance candidates for further understanding of host resistance in the WPBR pathosystem.  相似文献   

14.
Burkholderia pseudomallei, a pathogenic gram‐negative bacterium, causes the severe human disease melioidosis. This organism can survive in eukaryotic host cells by escaping reactive oxygen species via the regulation of stress responsive sigma factors, including RpoS. In B. pseudomallei, RpoS has been reported to play a role in the oxidative stress response through enhanced activity of OxyR and catalase. In this study, the RpoS dependent oxidative stress responsive system was further characterized using comparative proteomic analysis. The proteomic profiles of wild‐type B. pseudomallei following exposure to H2O2 and between wild‐type and the rpoS mutant strains were analyzed. Using stringent criteria, 13 oxidative responsive proteins, eight of which are regulated by RpoS, were identified with high confidence. It was observed that ScoA, a subunit of the SCOT enzyme not previously shown to be involved directly in the oxidative stress response, is significantly down‐regulated after hydrogen peroxide treatment. ScoA and ScoB have been predicted to be organized in a single operon using computational methods: in this study it was confirmed by RT‐PCR that these genes are indeed co‐transcribed as a single mRNA. The present study is the first to report a role for RpoS in the down‐regulation of SCOT expression in response to oxidative stress in B. pseudomallei.  相似文献   

15.
The pathogenicity of Listeria monocytogenes is related to its ability of invading and multiplying in eukaryotic cells. Its main virulence factors are now well characterized, but limited proteomic data is available concerning its adaptation to the intracellular environment. In this study, L. monocytogenes EGD (serotype 1/2a) grown in human THP‐1 monocytes (24 h) were successfully separated from host organelles and cytosolic proteins by differential and isopycnic centrifugation. For control, we used cell homogenates spiked with bacteria grown in broth. Proteomes from both forms of bacteria were compared using a 2‐D‐DIGE approach followed by MALDI‐TOF analysis to identify proteins. From 1684 distinct spots, 448 were identified corresponding to 245 distinct proteins with no apparent contamination of host proteins. Amongst them, 61 show underexpression (stress defense; transport systems, carbon metabolism, pyrimidines synthesis, D ‐Ala‐D ‐Ala ligase) and 22 an overexpression (enzymes involved in the synthesis of cell envelope lipids, glyceraldehyde‐3‐phosphate, pyruvate and fatty acids). Our proteomic analysis of intracellular L. monocytogenes (i) suggests that bacteria thrive in a more favorable environment than extracellularly, (ii) supports the concept of metabolic adaptation of bacteria to intracellular environment and (iii) may be at the basis of improved anti‐Listeria therapy.  相似文献   

16.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

17.
18.
Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice–C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG‐fractionation of total proteins coupled with MS (MALDI‐TOF/TOF and nESI‐LC‐MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS‐PAGE in combination with nESI‐LC‐MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice–C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects.  相似文献   

19.
20.
Mermithid nematodes, such as Ovomermis sinensis, are used as biological control agents against many insect pests, including cotton bollworm (Helicoverpa armigera). However, given the host's robust immune system, the infection rate of O. sinensis is low, thus restricting its widespread use. To understand the host defense mechanisms against mermithid nematodes, we identified and characterized a protein involved in the recognition of O. sinensis, the potential O. sinensis-binding protein C-type lectin 1 (HaCTL1a and/or HaCTL1b), which was eluted from the surface of O. sinensis after incubation with H. armigera plasma. HaCTL1b is homologous to the previously reported HaCTL1a protein. HaCTL1 was predominantly expressed in hemocytes and was induced by the steroid hormone 20-hydroxyecdysone through ecdysone receptor (HaEcR) or ultraspiracle (HaUSP), or both. Binding assays confirmed the interactions of the HaCTL1 proteins with O. sinensis but not with Romanomermis wuchangensis, a parasitic nematode of mosquito. Moreover, the HaCTL1 proteins were secreted into the hemocoel and promoted hemocyte-mediated encapsulation and phagocytosis. A knockdown of HaEcR and/or HaUSP resulted in compromised encapsulation and phagocytosis. Thus, HaCTL1 appears to modulate cellular immunity in the defense against parasitic nematodes, and the 20-hydroxyecdysone–HaEcR–HaUSP complex is involved in regulating the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号