首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
CREB-binding protein (CBP) is a multifunctional cofactor implicated in many intracellular signal transduction pathways. We aimed to investigate the involvement of CBP in the cAMP response element-binding protein (CREB)-mediated pathway. The point mutation Tyr658Ala in the CREB-binding domain (CBD) was shown to abolish the binding activity of CBP to phospho-CREB, the activated form of CREB. By using a mutant Cre/loxP recombination system, this point mutation was aimed to be generated in the mouse genome in a tissue- and time-specific manner. A targeting construct in which CBD exon 5 and inverted exon 5* containing the point mutation flanked by two mutant loxP sites (lox66 and lox71) oriented in a head-to-head position was generated. When Cre recombinase is present, the DNA flanked by the two mutant loxP sites is inverted, forming one loxP and one double mutated loxP site. As the double mutated loxP site shows low affinity for Cre recombinase, the favorable reaction leads to a product where the mutated exon 5* is placed into the position to be correctly transcribed and spliced. Inversion was observed to be complete in both bacteria and mouse embryonic stem cells. Our results indicate that this Cre- mediated inversion method is a valuable tool to introduce point mutations in the mouse genome in a regulatable manner.  相似文献   

3.
4.
5.
Genetically engineered mice with point mutations in endogenous genes (i.e., knockin mice) are extremely useful tools for dissecting gene function. Currently available methodologies for creating knockin mice are limited in that the introduced mutation is globally present in all cells of the animal from conception through adulthood. In this report, we describe a strategy for creating mice in which a point mutant allele replaces the wild type allele in a conditional manner, e.g., in a tissue-specific and/or temporally restricted pattern. As proof of concept, we created mice that conditionally harbor a point mutated gamma-aminobutyric acid receptor subunit. In the absence of Cre recombinase, the engineered allele produces only wild type product with no evidence of expression of the mutant. In contrast, following Cre-mediated recombination, only the point mutant product is produced. By restricting Cre expression to subpopulations of neurons of postnatal animals, we demonstrate tissue-specific regulation of the point mutant knockin. This strategy will be useful for a wide variety of studies that require precise conditional replacement of an endogenous wild type gene with a point mutant.  相似文献   

6.
7.
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKβ/CaMKIV/CREB1 activities to facilitate TH expression.  相似文献   

8.
9.
10.
CREB Phosphorylation Promotes Nerve Cell Survival   总被引:11,自引:0,他引:11  
  相似文献   

11.
12.
13.
Many growth regulatory stimuli promote cAMP response element-binding protein (CREB) Ser(133) phosphorylation, but the physiologically relevant CREB-Ser(133) kinase(s) in the heart remains uncertain. This study identifies a novel role for protein kinase D (PKD) as an in vivo cardiac CREB-Ser(133) kinase. We show that thrombin activates a PKCdelta-PKD pathway leading to CREB-Ser(133) phosphorylation in cardiomyocytes and cardiac fibroblasts. alpha(1)-Adrenergic receptors also activate a PKCdelta-PKD-CREB-Ser(133) phosphorylation pathway in cardiomyocytes. Of note, while the epidermal growth factor (EGF) promotes CREB-Ser(133) phosphorylation via an ERK-RSK pathway in cardiac fibroblasts, the thrombin-dependent EGFR transactivation pathway leading to ERK-RSK activation does not lead to CREB-Ser(133) phosphorylation in this cell type. Adenoviral-mediated overexpression of PKCdelta (but not PKCepsilon or PKCalpha) activates PKD; PKCdelta and PKD1-S744E/S748E overexpression both promote CREB-Ser(133) phosphorylation. Pasteuralla multocida toxin (PMT), a direct Galpha(q) agonist that induces robust cardiomyocyte hypertrophy, also activates the PKD-CREB-Ser(133) phosphorylation pathway, leading to the accumulation of active PKD and Ser(133)-phosphorylated CREB in the nucleus, activation of a CRE-responsive promoter, and increased Bcl-2 (CREB target gene) expression in cardiomyocyte cultures. Cardiac-specific Galpha(q) overexpression also leads to an increase in PKD-Ser(744)/Ser(748) and CREB-Ser(133) phosphorylation as well as increased Bcl-2 protein expression in the hearts of transgenic mice. Collectively, these studies identify a novel Galpha(q)-PKCdelta-PKD-CREB-Ser(133) phosphorylation pathway that is predicted to contribute to cardiac remodeling and could be targeted for therapeutic advantage in the setting of heart failure phenotypes.  相似文献   

14.
15.
16.
17.
Signaling through cAMP plays an important role in heart failure. Phosphorylation of cAMP response element binding protein (CREB) at serine-133 regulates gene expression in the heart. We examined the functional significance of CREB-S133 phosphorylation by comparing transgenic models in which a phosphorylation resistant CREB-S133A mutant containing either an intact or a mutated leucine zipper domain (CREB-S133A-LZ) was expressed in the heart. In vitro, CREB-S133A retained the ability to interact with wild-type CREB, whereas CREB-S133A-LZ did not. In vivo, CREB-S133A and CREB-S133A-LZ were expressed at comparable levels in the heart; however, CREB-S133A markedly suppressed the phosphorylation of endogenous CREB, whereas CREB-S133A-LZ had no effect. The one-year survival of mice from two CREB-S133A-LZ transgenic lines was equivalent to nontransgenic littermate control mice (NTG), whereas transgenic CREB-S133A mice died with heart failure at a median 30 wk of age (P < 0.0001). CREB-S133A mice had an altered gene expression characteristic of the failing heart, whereas CREB-S133A-LZ mice did not. Left ventricular contractile function was substantially reduced in CREB-S133A mice versus NTG mice and only modestly reduced in CREB-S133A-LZ mice (P < 0.02). When considered in light of other studies, these findings indicate that overexpression of the CREB leucine zipper is required for both inhibition of endogenous CREB phosphorylation and cardiomyopathy in this murine model of heart failure.  相似文献   

18.
A number of second messenger pathways propagate inductive signals via protein-protein interactions that are phosphorylation-dependent. The second messenger, cAMP, for example, promotes cellular gene expression via the protein kinase A-mediated phosphorylation of cAMP-response element-binding protein (CREB) at Ser(133), and this modification in turn stimulates the association of CREB with the co-activator, CREB-binding protein (CBP). The solution structure of the CREB.CBP complex, using relevant interaction domains, kinase inducible domain and kinase-induced domain interacting domain, referred to as KID and KIX, respectively, shows that KID undergoes a coil to helix transition, upon binding to KIX, that stabilizes complex formation. Whether such changes occur in the context of the full-length CREB and CBP proteins, however, is unclear. Here we characterize a novel antiserum that specifically binds to the CREB. CBP complex but to neither protein individually. Epitope mapping experiments demonstrate that the CREB.CBP antiserum detects residues in KID that undergo a conformational change upon binding to KIX. The ability of this antiserum to recognize full-length CREB.CBP complexes in a phospho-(Ser(133))-dependent manner demonstrates that the structural transition observed with the isolated KID domain also occurs in the context of the full-length CREB protein. To our knowledge, this is the first report documenting formation of endogenous cellular protein-protein complexes in situ.  相似文献   

19.
Cre1 of the ascomycete Hypocrea jecorina is a Cys(2)His(2) zinc finger DNA-binding protein functioning as regulator for carbon catabolite repression. It represents the functional equivalent of yeast Mig1, known to be negatively regulated by the Snf1-kinase at the nuclear import level. We demonstrate that Cre1 is also a phosphoprotein, and identify Ser(241) within an acidic protein region as phosphorylation target. In contrast to Mig1 phosphorylation is required for DNA binding of Cre1. A S241E mutation mimics phosphorylation, whereas a S241A mutant protein shows phosphorylation-independent DNA binding activity, suggesting that phosphorylation is required to release Cre1 from an inactive conformation involving unphosphorylated Ser(241). Retransformation of a H. jecorina cre1-non functional mutant with Cre1-S241A leads to permanent carbon catabolite repression in cellobiohydrolase I expression. Contrary to Mig1, the amino acid sequence surrounding Ser(241) (HSNDEDD) suggests that phosphorylation may occur by a casein kinase II-like protein. This is supported by a mutation of E244V leading to loss of phosphorylation, loss of DNA binding, and gain of carbon catabolite derepression. Our results imply that the regulation of carbon catabolite repression at the level of DNA binding strongly differs between Saccharomyces cerevisiae and H. jecorina.  相似文献   

20.
DYRKs are a new family of dual-specificity tyrosine-regulated kinases with emerging roles in cell growth and development. Recently, we discovered that DYRK3 is expressed primarily in erythroid progenitor cells and modulates late erythropoiesis. We now describe 1) roles for the DYRK3 YTY signature motif in kinase activation, 2) the coupling of DYRK3 to cAMP response element (CRE)-binding protein (CREB), and 3) effects of DYRK3 on hematopoietic progenitor cell survival. Regarding the DYRK3 kinase domain, intactness of Tyr(333) (but not Tyr(331)) within subdomain loop VII-VIII was critical for activation. Tyr(331) plus Tyr(333) acidification (Tyr mutated to Glu) was constitutively activating, but kinase activity was not affected substantially by unique N- or C-terminal domains. In transfected 293 and HeLa cells, DYRK3 was discovered to efficiently stimulate CRE-luciferase expression, to activate a CREB-Gal4 fusion protein, and to promote CREB phosphorylation at Ser(133). Interestingly, this CREB/CRE response was also supported (50% of wild-type activity) by a kinase-inactive DYRK3 mutant as well as a DYRK3 C-terminal region and was blocked by protein kinase A inhibitors, suggesting functional interactions between protein kinase A and DYRK3. Finally, DYRK3 expression in cytokine-dependent hematopoietic FDCW2 cells was observed to inhibit programmed cell death. Thus, primary new insight into DYRK3 kinase signaling routes, subdomain activities, and possible biofunctions is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号