首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) are members of a superfamily of cell surface signaling proteins that play critical roles in many physiological functions; malfunction of these proteins is associated with multiple diseases. Understanding the structure–function relationships of these proteins is important, therefore, for GPCR-based drug discovery. The yeast Saccharomyces cerevisiae tridecapeptide pheromone α-factor receptor Ste2p has been studied as a model to explore the structure–function relationships of this important class of cell surface receptors. Although transmembrane domains of GPCRs have been examined extensively, the extracellular N-terminus and loop regions have received less attention. We have used substituted cysteine accessibility method to probe the solvent accessibility of single cysteine residues engineered to replace residues Gly20 through Gly33 of the N-terminus of Ste2p. Unexpectedly, our analyses revealed that the residues Ser22, Ile24, Tyr26, and Ser28 in the N-terminus were solvent inaccessible, whereas all other residues of the targeted region were solvent accessible. The periodicity of accessibility from residues Ser22–Ser28 is indicative of an underlying structure consistent with a β-strand that was predicted computationally in this region. Moreover, a number of these Cys-substituted Ste2p receptors (G20C, S22C, I24C, Y26C, S28C and Y30C) were found to form increased dimers compared to the Cys-less Ste2p. Based on these data, we propose that part of the N-terminus of Ste2p is structured and that this structure forms a dimer interface for Ste2p molecules. Dimerization mediated by the N-terminus was affected by ligand binding, indicating an unanticipated conformational change in the N-terminus upon receptor activation.  相似文献   

2.
陈江野  陈曦 《生命科学》2002,14(3):159-162
酿酒酵母单倍体细胞能够与相反交配型的单倍体细胞发生交配。交配时酿酒酵母放弃原有出芽位点,根据信息素的浓度梯度,重新选择生长位点,向相反交配型细胞伸出突起进行极性生长。交配因子受体指导选择交配突起的位点,通过G蛋白激活Ste20p,将信号经由Ste11p、Ste7p和Fus3p组成的MAPK模块传递到Far1p和Ste12p等因子,调控相关基因的转录,抑制原有的出芽位点,选择新的生长位点,并使细胞周期停止在G1期,G蛋白与Cdc24p、Cdc42p和Bem1p等蛋白作用,聚集在细胞,使得肌协蛋白细胞骨架在交配突起处聚集,呈极性化分布,使细胞发生极性生长。  相似文献   

3.
G protein-coupled receptors (GPCRs) are members of a superfamily of cell surface signaling proteins that play critical roles in many physiological functions; malfunction of these proteins is associated with multiple diseases. Understanding the structure-function relationships of these proteins is important, therefore, for GPCR-based drug discovery. The yeast Saccharomyces cerevisiae tridecapeptide pheromone α-factor receptor Ste2p has been studied as a model to explore the structure-function relationships of this important class of cell surface receptors. Although transmembrane domains of GPCRs have been examined extensively, the extracellular N-terminus and loop regions have received less attention. We have used substituted cysteine accessibility method to probe the solvent accessibility of single cysteine residues engineered to replace residues Gly20 through Gly33 of the N-terminus of Ste2p. Unexpectedly, our analyses revealed that the residues Ser22, Ile24, Tyr26, and Ser28 in the N-terminus were solvent inaccessible, whereas all other residues of the targeted region were solvent accessible. The periodicity of accessibility from residues Ser22-Ser28 is indicative of an underlying structure consistent with a β-strand that was predicted computationally in this region. Moreover, a number of these Cys-substituted Ste2p receptors (G20C, S22C, I24C, Y26C, S28C and Y30C) were found to form increased dimers compared to the Cys-less Ste2p. Based on these data, we propose that part of the N-terminus of Ste2p is structured and that this structure forms a dimer interface for Ste2p molecules. Dimerization mediated by the N-terminus was affected by ligand binding, indicating an unanticipated conformational change in the N-terminus upon receptor activation.  相似文献   

4.
Saccharomyces cerevisiae responds to mating pheromones by activating a receptor-G-protein-coupled mitogen-activated protein kinase (MAPK) cascade that is also used by other signaling pathways. The activation of the MAPK cascade may involve conformational changes through prebound receptor and heterotrimeric G-protein. G beta may then recruit Cdc42-bound MAPKKKK Ste20 to MAPKKK Ste11 through direct interactions with Ste20 and the Ste5 scaffold. Ste20 activates Ste11 by derepressing an autoinhibitory domain. An underlying nuclear shuttling machinery may be required for proper recruitment of Ste5 to G beta. Subsequent polarized growth is mediated by a similar mechanism involving Far1, which binds G beta in addition to Cdc24 and Bem1. Far1 and Cdc24 also undergo nuclear shuttling and the nuclear pool of Far1 may temporally regulate access of Cdc24 to the cell cortex.  相似文献   

5.
The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein betagamma subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gbeta (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gbetagamma coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Galpha) and Ste18p (Ggamma) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gbetagamma coiled-coil in Ste5p binding may set a precedent for Gbetagamma-effector interactions in more complex organisms.  相似文献   

6.
7.
Villasmil ML  Ansbach A  Nickels JT 《Genetics》2011,187(2):455-465
Saccharomyces cerevisiae haploid cells respond to extrinsic mating signals by forming polarized projections (shmoos), which are necessary for conjugation. We have examined the role of the putative lipid transporter, Arv1, in yeast mating, particularly the conserved Arv1 homology domain (AHD) within Arv1 and its role in this process. Previously it was shown that arv1 cells harbor defects in sphingolipid and glycosylphosphatidylinositol (GPI) biosyntheses and may harbor sterol trafficking defects. Here we demonstrate that arv1 cells are mating defective and cannot form shmoos. They lack the ability to initiate pheromone-induced G1 cell cycle arrest, due to failure to polarize PI(4,5)P(2) and the Ste5 scaffold, which results in weakened MAP kinase signaling activity. A mutant Ste5, Ste5(Q59L), which binds more tightly to the plasma membrane, suppresses the MAP kinase signaling defects of arv1 cells. Filipin staining shows arv1 cells contain altered levels of various sterol microdomains that persist throughout the mating process. Data suggest that the sterol trafficking defects of arv1 affect PI(4,5)P(2) polarization, which causes a mislocalization of Ste5, resulting in defective MAP kinase signaling and the inability to mate. Importantly, our studies show that the AHD of Arv1 is required for mating, pheromone-induced G1 cell cycle arrest, and for sterol trafficking.  相似文献   

8.
The pheromone pathway is one of the mitogen activated protein kinase (MAPK) signaling pathways identified in Saccharomyces cerevisiae and is involved in both G1 cell cycle arrest and mating of cells. Fus3 functions at a branching point for G1 cell cycle arrest and mating responses in the signaling cascade, and the Fus3 MAPK uses components of both G1 arrest and mating routes as substrates. The Ste5 is a scaffold protein of the MAPK module and is essential for the activation of Fus3. However, it is not known how Ste5 is involved in the specific activation of Fus3 in G1 arrest and mating. In this study, we characterized several G1 arrest defective Ste5 mutants to better understand the roles of Ste5 in the regulation of Fus3. The level of Fus3 increased by treatment with alpha-factor. However, the alpha-factor effects were not readily apparent in the observation of yeast cells containing G1 arrest defective ste5 mutant. This suggests that Ste5 plays an essential role in Fus3 induction. Fus3 immune kinase assay of G1 arrest defective ste5 transformants revealed that Ste5 is important for substrate specificity of Fus3 for G1 arrest and/or mating.  相似文献   

9.
GPR37, also known as parkin‐associated endothelin‐like receptor (Pael‐R), is an orphan G protein‐coupled receptor (GPCR) that aggregates intracellularly in a juvenile form of Parkinson's disease. However, little is known about the structure or function of this receptor. Here, in order to better understand the functioning of this receptor, we focused on the GPR37 C‐terminal tail, in particular on a cystein‐enriched region. Thus, we aimed to reveal the role of these residues on receptor plasma membrane expression and function, and also whether the presence of this cysteine‐rich domain is linked to the previously described receptor‐mediated cytotoxicity. Interestingly, while the deletion of six cysteine residues within this region did not affect receptor internalization it promoted GPR37 plasma membrane expression and signaling. Furthermore, the removal of the C‐terminal cysteine‐rich domain protected against GPR37‐mediated apoptosis and cell death. Overall, we identified a GPR37 domain, namely the C‐terminal tail cysteine‐rich domain, which played a critical role in receptor cell surface expression, function and GPR37‐mediated cytotoxicity. These results might contribute to better comprehend the pathophysiology (i.e. in Parkinson's disease) of this rather unknown member of the GPCR family.  相似文献   

10.
Endocytic internalization of G protein-coupled receptors (GPCRs) plays a critical role in down-regulation of GPCR signaling. The yeast mating pheromone receptor Ste2p has been used as a model to investigate mechanisms of signal transduction, modification, and endocytic internalization of GPCRs. We previously used a fluorescently labeled mating pheromone derivative to reveal unappreciated molecular and spatiotemporal features of GPCR endocytosis in budding yeast. Here, we identify recruitment of Ste2p to preexisting clathrin-coated pits (CCPs) as a key step regulated by receptor phosphorylation and subsequent ubiquitination upon ligand binding. The yeast casein kinase I homologue Yck2p directly phosphorylates six serine residues located in the C-terminal tail of Ste2p, and mutation of these serine residues to alanine significantly decreased recruitment of Ste2p to CCPs. We also found that the clathrin adaptors Ent1p, Ent2p, and Ede1p work cooperatively to recruit ubiquitinated Ste2p to CCPs. In addition, ubiquitination has a role in ligand-independent constitutive recruitment of Ste2p to CCPs, although this process is much slower than ligand-induced recruitment. These results suggest that ubiquitination of Ste2p is indispensable for recruiting Ste2p to CCPs in both ligand-dependent and ligand-independent endocytosis.  相似文献   

11.
Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.  相似文献   

12.
Saccharomyces cerevisiae Ste5 is a scaffold protein that recruits many pheromone signaling molecules to sequester the pheromone pathway from other homologous mitogen-activated protein kinase pathways. G1 cell cycle arrest and mating are two different physiological consequences of pheromone signal transduction and Ste5 is required for both processes. However, the roles of Ste5 in G1 arrest and mating are not fully understood. To understand the roles of Ste5 better, we isolated 150 G1 cell cycle arrest defective STE5 mutants by chemical mutagenesis of the gene. Here, we found that two G1 cell cycle arrest defective STE5 mutants (ste5M(D248V) and ste5(delta-776)) retained mating capacity. When overproduced in a wild-type strain, several ste5 mutants also showed different dominant phenotypes for G1 arrest and mating. Isolation and characterization of the mutants suggested separable roles of Ste5 in G1 arrest and mating of S. cerevisiae. In addition, the roles of Asp-248 and Tyr-421, which are important for pheromone signal transduction were further characterized by site-directed mutagenesis studies.  相似文献   

13.
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.  相似文献   

14.
The Saccharomyces cerevisiae mating pheromone a-factor provides a paradigm for understanding the biogenesis of prenylated fungal pheromones. The biogenesis of a-factor involves multiple steps: (i) C-terminal CAAX modification (where C is cysteine, A is aliphatic, and X is any residue) which includes prenylation, proteolysis, and carboxymethylation (by Ram1p/Ram2p, Ste24p or Rce1p, and Ste14p, respectively); (ii) N-terminal processing, involving two sequential proteolytic cleavages (by Ste24p and Axl1p); and (iii) nonclassical export (by Ste6p). Once exported, mature a-factor interacts with the Ste3p receptor on MATalpha cells to stimulate mating. The a-factor biogenesis machinery is well defined, as is the CAAX motif that directs C-terminal modification; however, very little is known about the sequence determinants within a-factor required for N-terminal processing, activity, and export. Here we generated a large collection of a-factor mutants and identified residues critical for the N-terminal processing steps mediated by Ste24p and Axl1p. We also identified mutants that fail to support mating but do not affect biogenesis or export, suggesting a defective interaction with the Ste3p receptor. Mutants significantly impaired in export were also found, providing evidence that the Ste6p transporter recognizes sequence determinants as well as CAAX modifications. We also performed a phenotypic analysis of the entire set of isogenic a-factor biogenesis machinery mutants, which revealed information about the dependency of biogenesis steps upon one another, and demonstrated that export by Ste6p requires the completion of all processing events. Overall, this comprehensive analysis will provide a useful framework for the study of other fungal pheromones, as well as prenylated metazoan proteins involved in development and aging.  相似文献   

15.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   

16.
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.  相似文献   

17.
Diallyl disulfide (DADS) is the most prevalent oil‐soluble sulfur compound in garlic and inhibits cell proliferation in many cancer cell lines. Here we examined DADS cytotoxicity in a redox‐mediated process, involving reactive oxygen species (ROS) production. In the present study, p53‐independent cell cycle arrest at G2/M phase was observed with DADS treatment, along with time‐dependent increase of cyclin B1. In addition, apoptosis was also observed upon 24‐h DADS treatment accompanied by activation of p53. In HCT‐116 cells, DADS application induced a dose‐dependent increase and time‐dependent changes in ROS production. Scavenging of DADS‐induced ROS by N‐acetyl cysteine or reduced glutathione inhibited cell cycle arrest, apoptosis and p53 activation by DADS. These results suggest that ROS trigger the DADS‐induced cell cycle arrest and apoptosis and that ROS are involved in stress‐induced signaling upstream of p53 activation. Transfection of p53 small interfering RNA prevents the accumulation of cleaved poly(ADP‐ribose) polymerase and sub‐G1 cell population by 65% and 35%, respectively. Moreover, DADS‐induced apoptosis was also prevented by treatment with oligomycin, which is known to prevent p53‐dependent apoptosis by reducing ROS levels in mitochondria. These results suggest that mitochondrial ROS may serve as second messengers in DADS‐induced apoptosis, which requires activation of p53. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:71–79, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20266  相似文献   

18.
Fus3p and Kss1p act at the end of a conserved signaling cascade that mediates numerous cellular responses for mating. To determine the role of Fus3p in different outputs, we isolated and characterized a series of partial-function fus3 point mutants for their ability to phosphorylate a substrate (Ste7p), activate Ste12p, undergo G1 arrest, form shmoos, select partners, mate, and recover. All the mutations lie in residues that are conserved among MAP kinases and are predicted to affect either enzyme activity or binding to Ste7p or substrates. The data argue that Fus3p regulates the various outputs assayed through the phosphorylation of multiple substrates. Different levels of Fus3p function are required for individual outputs, with the most function required for shmoo formation, the terminal output. The ability of Fus3p to promote shmoo formation strongly correlates with its ability to promote G1 arrest, suggesting that the two events are coupled. Fus3p promotes recovery through a mechanism that is distinct from its ability to promote G1 arrest and may involve a mechanism that does not require kinase activity. Moreover, catalytically inactive Fus3p inhibits the ability of active Fus3p to activate Ste12p and hastens recovery without blocking G1 arrest or shmoo formation. These results raise the possibility that in the absence of sustained activation of Fus3p, catalytically inactive Fus3p blocks further differentiation by restoring mitotic growth. Finally, suppression analysis argues that Kss1p contributes to the overall pheromone response in a wild-type strain, but that Fus3p is the critical kinase for all of the outputs tested.  相似文献   

19.
The goal of this work was to improve the bioluminescence‐based signaling assay system to create a practical application of a biomimetic odor sensor using an engineered yeast‐expressing olfactory receptors (ORs). Using the yeast endogenous pheromone receptor (Ste2p) as a model GPCR, we determined the suitable promoters for the firefly luciferase (luc) reporter and GPCR genes. Additionally, we deleted some genes to further improve the sensitivity of the luc reporter assay. By replacing the endogenous yeast G‐protein α‐subunit (Gpa1p) with the olfactory‐specific Gαolf, the optimized yeast strain successfully transduced signal through both OR and yeast Ste2p. Our results will assist the development of a bioluminescence‐based odor‐sensing system using OR‐expressing yeast. Biotechnol. Bioeng. 2012; 109: 3143–3151. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Two peptides, corresponding to the turn region of the C‐terminal β‐hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus, consisting of residues 51–56 [IG(51–56)] and 50–57 [IG(50–57)], respectively, were studied by circular dichroism and NMR spectroscopy at various temperatures and by differential scanning calorimetry. Our results show that the part of the sequence corresponding to the β‐turn in the native structure (DDATKT) of the B3 domain forms bent conformations similar to those observed in the native protein. The formation of a turn is observed for both peptides in a broad range of temperatures (T = 283–323 K), which confirms the conclusion drawn from our previous studies of longer sequences from the C‐terminal β‐hairpin of the B3 domain of the immunoglobulin binding protein G (16, 14, and 12 residues), that the DDATKT sequence forms a nucleation site for formation of the β‐hairpin structure of peptides corresponding to the C‐terminal part of all the B domains of the immunoglobulin binding protein G. We also show and discuss the role of long‐range hydrophobic interactions as well as local conformational properties of polypeptide chains in the mechanism of formation of the β‐hairpin structure. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号