首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant’s resistance to disease.  相似文献   

2.
Aims: Previously, we selected a bacterial strain (GSE09) antagonistic to Phytophthora capsici on pepper, which produced a volatile compound (2,4‐di‐tert‐butylphenol), inhibiting the pathogen. In this study, we identified strain GSE09 and characterized some of the biological traits of this strain in relation to its antagonistic properties against P. capsici. In addition, we examined bacterial colonization on the root surface or in rhizosphere soil and the effect of various concentrations of the volatile compound and strain GSE09 on pathogen development and radicle infection as well as radicle growth. Methods and Results: Strain GSE09 was identified as Flavobacterium johnsoniae, which forms biofilms and produces indolic compounds and biosurfactant but not hydrogen cyanide (HCN) with little or low levels of antifungal activity and swimming and swarming activities. Fl. johnsoniae GSE09 effectively colonized on pepper root, rhizosphere, and bulk (pot) soil, which reduced the pathogen colonization in the roots and disease severity in the plants. Various concentrations of 2,4‐di‐tert‐butylphenol or strain GSE09 inhibited pathogen development (mycelial growth, sporulation, and zoospore germination) in I‐plate (a plastic plate containing a center partition). In addition, germinated seeds treated with the compound (1–100 μg ml?1) or the strain (102–1010 cells ml?1) significantly reduced radicle infection by P. capsici without radicle growth inhibition. Conclusions: These results indicate that colonization of pepper root and rhizosphere by the Fl. johnsoniae strain GSE09, which can form biofilms and produce indolic compounds, biosurfactant, and 2,4‐di‐tert‐butylphenol, might provide effective biocontrol activity against P. capsici. Significance and Impact of the Study: To our knowledge, this is the first study demonstrating that the Fl. johnsoniae strain GSE09, as a potential biocontrol agent, can effectively protect pepper plants against P. capsici infection by colonizing the roots.  相似文献   

3.
To investigate the variations of the enzymes responsible for lignification, after inoculation with Phytophthora capsici and/or Paenibacillus illinoisensis KJA-424, in relation to biocontrol of Phytophthora blight in pepper, roots of two-month-old plants were inoculated with P. capsici inoculation (P), and co-inoculation of P. capsici and P. illinoisensis cell cultures (P + A). Root mortality of pepper plants induced by inoculation of P. capsici was completely recovered by co-inoculation with antagonistic KJA-424. At day 7, peroxidase (POD) activity increased by 36.7% in P-treated roots but by 7.1% only in P + A-treated, compared with control. Polyphenol oxidase (PPO) activity increased for 3 days and then drastically decreased in P-treated roots but maintained a constant level in control and P + A-treated. At day 7, PPO activity in P-treated leaves decreased but recovered to the level of control in the P + A-treated. Three major POD isozymes (45, 53, and 114 kDa) were shown in P-treated roots, while two major (53 and 114 kDa) in control and P + A-treated, suggesting that the 45 kDa of POD was actively induced in P-treated roots but not induced in P + A-treated roots. A PPO isozyme of 80 kDa was induced in P-treated roots but not induced by co-treated with KJA-424. In leaves, the POD isozyme of 45 kDa appears to be systemically induced in P-treated only. The PPO isozyme of 80 kDa in leaves was not induced by pathogen challenge but recovered by co-inoculated with P. illinoisensis. All these results suggest that the inoculation of an antagonist, P. illinoisensis alleviates root mortality, activates of lignification-related enzymes and induction of the isozymes in pepper plants infected by P. capsici.  相似文献   

4.
The leaves of pepper (Capsicum anuum L.) were inoculated with Phytophthora capsici Leonian 3 d after treatment with acibenzolar-S-methylbenzo [1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester (ASM) and resistance to Phytophthora blight disease was investigated. Results showed that P. capsici was significantly inhibited by ASM treatment by up to 45 % in planta. The pepper plants responded to ASM treatments by rapid and transient induction of L-phenylalanine ammonia-lyase (PAL), increase in total phenol content and activities of chitinase and β-1,3-glucanase. No significant increases in enzyme activities were observed in water-treated control plants compared with the ASM-treated plants. Therefore it may be suggested that ASM induces defense-related enzymes, PAL activity, PR proteins and phenol accumulation in ASM-treated plants and contribute to enhance resistance against P. capsici.  相似文献   

5.
Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, β-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and β-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.  相似文献   

6.
With the increasing availability of plant pathogen genomes, secreted proteins that aid infection (effectors) have emerged as key factors that help to govern plant–microbe interactions. The conserved CRN (CRinkling and Necrosis) effector family was first described in oomycetes by their capacity to induce host cell death. Despite recent advances towards the elucidation of CRN virulence functions, the relevance of CRN‐induced cell death remains unclear. In planta over‐expression of PcCRN83_152, a CRN effector from Phytophthora capsici, causes host cell death and boosts P. capsici virulence. We used these features to ask whether PcCRN83_152‐induced cell death is linked to its virulence function. By randomly mutating this effector, we generated PcCRN83_152 variants with no cell death (NCD) phenotypes, which were subsequently tested for activity towards enhanced virulence. We showed that a subset of PcCRN83_152 NCD variants retained their ability to boost P. capsici virulence. Moreover, NCD variants were shown to have a suppressive effect on PcCRN83_152‐mediated cell death. Our work shows that PcCRN83_152‐induced cell death and virulence function can be separated. Moreover, if these findings hold true for other cell death‐inducing CRN effectors, this work, in turn, will provide a framework for studies aimed at unveiling the virulence functions of these effectors.  相似文献   

7.
The gram-positive bacterial species Clavibacter capsici causes necrosis and canker in pepper plants. Genomic and functional analyses of C. capsici type strain PF008 have shown that multiple virulence genes exist in its two plasmids. We aimed to identify the key determinants that control the virulence of C. capsici. Pepper leaves inoculated with 54 natural isolates exhibited significant variation in the necrosis. Six isolates showed very low virulence, but their population titres in plants were not significantly different from those of the highly virulent isolates. All six isolates lacked the pCM1Cc plasmid that carries chpG, which has been shown to be required for virulence and encodes a putative serine protease, but two of them, isolates 1,106 and 1,207, had the intact chpG elsewhere in the genome. Genomic analysis of these two isolates revealed that chpG was located in the pCM2Cc plasmid, and two highly homologous regions were present next to the chpG locus. The chpG expression in isolate 1,106 was not induced in plants. Introduction of chpG of the PF008 strain into the six low-virulence isolates restored their virulence to that of PF008. Our findings indicate that there are at least three different variant groups of C. capsici and that the plasmid composition and the chpG gene are critical for determining the virulence level. Moreover, our findings also indicate that the virulence level of C. capsici does not directly correlate with bacterial titres in plants.  相似文献   

8.
The oomycete Phytophthora capsici causes wilting disease in chilli pepper and another solanaceous plants, with important economic consequences. Although much investigation has been conducted about this pathogen, little is still known about which of its proteins are involved in the infection process. In this study, the bioassay‐guided fractionation of the secretome of P. capsici resulted in the purification of a phytotoxic protein fraction designated as p47f, capable of inducing wilting and necrosis on leaves of Capsicum chinense Jacq, and having a 47 kDa polypeptide with proteolytic activity as the major component. The isolated p47f fraction induced DNA degradation and decreased cell survival of C. chinense cell suspension culture. Sequencing of p47f indicated the presence of 15 proteins, which could be grouped into seven classes including a protease group, cell wall remodelling proteins and the transglutaminase elicitor M81D, among others. This is the first report of P. capsici secreting proteins that modulate cell responses mediated by ROS in the host.  相似文献   

9.
Phytophthora capsici is an oomycete known as the causal agent of wilting disease in Capsicum spp., which causes rotting of roots, crowns, stems, leaves and fruits. To date, little is known about the production of phytotoxic metabolites by P. capsici or their role in the infection process. As part of a project directed towards the isolation and identification of phytotoxins produced by a strain of P. capsici pathogenic to habanero pepper (Capsicum chinense), we have evaluated the effect of factors such as aeration, light and culture medium on the production of mycelium and phytotoxic metabolites by P. capsici. The results showed that culturing P. capsici in potato dextrose broth (PDB) containing habanero pepper leaf infusion, in the dark and under still conditions, results in a high production of mycelium and a high phytotoxicity of the culture filtrate, in the shortest period of time.  相似文献   

10.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

11.
Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Methods: Biosurfactant‐producing pseudomonads were genotypically and biochemically characterized by BOX‐polymerase chain reaction (PCR), 16S‐rDNA sequencing, reverse‐phase‐high‐performance liquid chromatography and liquid chromatography‐masss spectrometry analyses. Results: Biosurfactant‐producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX‐PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant‐producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Conclusions: Biosurfactant‐producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. Significance and Impact of the Study: The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.  相似文献   

12.
Phytophthora blight caused by Phytophthora capsici is a serious disease in the production of peppers and other vegetables worldwide. Application of fungicides is an important component in developing effective disease management programmes. However, resistance in P. capsici populations to some commonly used fungicides has been documented. Identification of effective new fungicides with different mode of actions is highly desirable. This study was conducted to determine baseline sensitivity of P. capsici isolates to oxathiapiprolin, the first member of a new class of isoxazoline fungicides, and efficacy of this compound for reduction of Phytophthora blight on bell pepper. A collection of 126 P. capsici isolates were evaluated and all the isolates were sensitive to oxathiapiprolin. EC50 values of oxathiapiprolin in inhibiting mycelial growth, sporangium formation and zoospore germination of 25 selected isolates averaged 0.001, 0.0003 and 0.54 µg mL?1, respectively. It appeared that asexual life stages of P. capsici were more sensitive to oxathiapiprolin than other compounds used for control of oomycete pathogens. In field studies, oxathiapiprolin applied at different rates through drip irrigation tubes, or by soil drench plus foliar sprays, reduced Phytophthora blight and increased pepper yield significantly. This is the first report of the efficacy of oxathiapiprolin in suppression of P. capsici, which indicates that oxathiapiprolin is effective in inhibiting the pathogen and has the promise to be a viable option for managing Phytophthora blight in bell pepper production.  相似文献   

13.
Plant chitinases have been of particular interest since they are known to be induced upon pathogen invasion. Inoculation of Piper colubrinum leaves with the foot rot fungus, Phytophthora capsici leads to increase in chitinase activity. A marked increase in chitinase activity in the inoculated leaves was observed, with the maximum activity after 60 h of inoculation and gradually decreased thereafter. Older leaves showed more chitinase activity than young leaves. The level of chitinase in black pepper (Piper nigrum L.) upon inoculation was found to be substantially high when compared to P. colubrinum. RT–PCR using chitinase specific primers revealed differential accumulation of mRNA in P. colubrinum leaves inoculated with P. capsici. However, hyphal extension assays revealed no obvious differences in the ability of the protein extracts to inhibit growth of P. capsici in vitro.  相似文献   

14.
Resistance induction on pepper and tomato after dipping roots into watersoluble elicitor Fractions issued from Phytophthora casici culture filtrate are generally tested for the elicitor activity on detached cotyledons, Another technic is proposed: young plants (pepper or tomato) are uprooted and their roots dipped into elicitor; after detaching the foliar organs, resistance induction is controlled against Phytophthora capsici or Phytophthora infestans. With pepper, dipping time optimum is about 48 hours; the leaves are better protected than the cotyledons. After elicitation and transplanting, resistance induction remains at the level of the leaves during about one month (50% protection) and decreases progressively beyond. Systemicity of induction is discussed and several hypothesis proposed.  相似文献   

15.
For field application of a bacterial strain used to control Phythophthora capsici, we will need a biologically and economically efficient carrier medium. The known antagonist Paenibacillus ehimensisKWN38 was grown in a grass medium where it showed high antifungal and lytic enzyme activities. To demonstrate the potential of P. ehimensisKWN38 for biocontrol of late blight disease in pepper, pot trials were conducted by treating the 1‐month‐old plants with water (W), a selected grass medium (G3), G plus P. ehimensisKWN38 inoculation (G3P) or synthetic fungicide (F). The shoot dry weight in G3P was higher than that in W and F treatments at 15 days after zoospore infection (DZI). The root dry weight in G3P was also higher than that in W. The root mortality of G3 and W increased over 58 and 80% at 15 DZI, and some plants in those treatments wilted due to the failure of root physiology. The plants in G3P and F survived well because of their better root health conditions. Soil cellulase activity of G3P was consistently higher than that of W and F at earlier observation times (0, 2 and 6 DZI). The root β‐1,3‐glucanase activity of G3P promptly increased to maximum shortly after zoospore infection and reached the maximum value of 51.12 unit g?1 of fresh weight at 2 DZI. All these results indicate that inoculation of P. ehimensisKWN38 to the root zone of potted pepper plants increases plant growth, root and soil enzyme activities and alleviates the root death caused by infection with P. capsici zoospores.  相似文献   

16.
Compost sustaining a multitude of chitinase-producing bacteria was evaluated in a greenhouse study as a soil amendment for the control of late blight (Phytophthora capsici L.) in pepper (Capsicum annuum L.). Microbial population and exogenous enzyme activity were measured in the rhizosphere and correlated to the growth and health of pepper plant. Rice straw was composted with and without a chitin source, after having been inoculated with an aliquot of coastal area soil containing a known titer of chitinase-producing bacteria. P. capsici inoculated plants cultivated in chitin compost-amended soil exhibited significantly higher root and shoot weights and lower root mortality than plants grown in pathogen-inoculated control compost. Chitinase and β-1,3-glucanase activities in rhizosphere of plants grown in chitin compost-amended soil were twice that seen in soil amended with control compost. Colony forming units of chitinase-producing bacteria isolated from rhizosphere of plants grown in chitin compost-amended soil were 103 times as prevalent as bacteria in control compost. These results indicate that increasing the population of chitinase-producing bacteria and soil enzyme activities in rhizosphere by compost amendment could alleviate pathogenic effects of P. capsici.  相似文献   

17.
The pepper accession Criollo de Morelos 334 is the most efficient source of resistance currently known to Phytophthora capsici and P. parasitica. To investigate whether genetic controls of resistance to two Phytophthora species are independent, we compared the genetic architecture of resistance of CM334 to both Phytophthora species. The RIL population F5YC used to construct the high-resolution genetic linkage map of pepper was assessed for resistance to one isolate of each Phytophthora species. Inheritance of the P. capsici and P. parasitica resistance was polygenic. Twelve additive QTLs involved in the P. capsici resistance and 14 additive QTLs involved in the P. parasitica resistance were detected. The QTLs identified in this progeny were specific to these Phytophthora species. Comparative mapping analysis with literature data identified three colocations between resistance QTLs to P. parasitica and P. capsici in pepper. Whereas this result suggests presence of common resistance factors to the two Phytophthora species in pepper, which possibly derive from common ancestral genes, calculation of the colocation probability indicates that these colocations could occur by chance.  相似文献   

18.
In this study, 76 bacterial strains were isolated from the rhizosphere soil of pepper. Of these, 23 bacterial isolates capable of inhibiting Phytophthora capsici growth were selected. Among the antagonistic bacteria, one strain, IBFCBF‐1 showed the strongest antagonistic activity, and was identified as Bacillus amyloliquefaciens based on the results of 16S rRNA gene sequence analysis, physiological and biochemical testing, and morphological characteristics. When tested with a dual‐culture method and with laboratory greenhouse studies, the strain IBFCBF‐1 was found to be a potential biocontrol agent for controlling the plant pathogen, P. capsici. Moreover, it showed high efficiency and broad‐spectrum antifungal properties in vitro. Under greenhouse conditions, IBFCBF‐1 could significantly promote the growth of pepper seedlings, and was able to solubilize phosphate, and produce indole acetic acid (IAA) and ammonia. This study clearly demonstrated that IBFCBF‐1 is a potential candidate exhibiting phytophthora blight‐suppressive and plant growth‐promoting effects on pepper.  相似文献   

19.
Phytophthora capsici causes devastating diseases on a broad range of plant species. To better understand the interaction with its host plants, knowledge obtained from a model pathosystem can be instrumental. Here, we describe the interaction between P. capsici and Arabidopsis and the exploitation of this novel pathosystem to assign metabolic pathways involved in defence against P. capsici. Inoculation assays on Arabidopsis accessions with different P. capsici isolates revealed interaction specificity among accession‐isolate combinations. In a compatible interaction, appressorium‐mediated penetration was followed by the formation of invasive hyphae, haustoria and sporangia in leaves and roots. In contrast, in an incompatible interaction, P. capsici infection elicited callose deposition, accumulation of active oxygen species and cell death, resulting in early pathogen encasement in leaves. Moreover, Arabidopsis mutants with defects in salicylic acid signalling, camalexin or indole glucosinolates biosynthesis pathways displayed severely compromised resistance to P. capsici. It is anticipated that this model pathosystem will facilitate the genetic dissection of complex traits responsible for resistance against P. capsici.  相似文献   

20.
【目的】分析辣椒疫霉中RXLR型效应子PcAvh2的序列多态性,研究该效应子在辣椒疫霉生长发育和侵染阶段的转录特征及其生物学功能。【方法】本研究通过高保真扩增,分析2个烟草疫霉、1个恶疫霉和31个辣椒疫霉菌株的PcAvh2序列;提取辣椒疫霉菌丝、游动孢子囊、游动孢子、萌发休止孢和7个侵染时间点(1.5、3、6、12、24、36、72 h)的本氏烟根部总RNA,利用RT-qPCR分析PcAvh2的转录表达水平;利用PVX瞬时表达系统,分析PcAvh2是否抑制6种效应子(BAX、INF1、PsojNIP、PsCRN63、PsAvh241、R3a/Avr3a)激发的植物免疫反应;利用CaCl_2-PEG介导的原生质体稳定转化技术,沉默PcAvh2基因,分析辣椒疫霉致病力的变化。【结果】PcAvh2为典型的RXLR效应子,在辣椒疫霉群体中该效应子具有10个等位基因,而且烟草疫霉和恶疫霉中也存在该效应子。该基因在辣椒疫霉的侵染阶段上调表达,它能够抑制6种效应子激发的植物免疫反应,进一步研究发现基因沉默导致辣椒疫霉的致病力显著下降。【结论】RXLR型效应子PcAvh2是辣椒疫霉中一个重要的侵染致病因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号