首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have generated a transgenic mouse line that expresses improved Cre recombinase (iCre) under the control of the testis‐expressed gene 101 (Tex101) promoter. This transgenic mouse line was named Tex101‐iCre. Using the floxed ROSA reporter mice, we found that robust Cre recombinase activity was detected in postnatal testes with weak or no activity in other tissues. Within the testis, Cre recombinase was active in spermatogenic cells as early as the prospermatogonia stage at day 1 after birth. In 30‐ and 60‐day‐old mice, positive Cre recombinase activity was detected not only in prospermatogonia but also in spermatogenic cells at later stages of spermatogenesis. There was little or no Cre activity in interstitial cells. Breeding wild‐type females with homozygous floxed fibroblast growth factor receptor 2 (Fgfr2) males carrying the Tex101‐iCre transgene did not produce any progeny with the floxed Fgfr2 allele. All the progeny inherited a recombined Fgfr2 allele, indicating that complete deletion of the floxed Fgfr2 allele by Tex101‐iCre can be achieved in the male germline. Furthermore, FGFR2 protein was not detected in spermatocytes and spermatids of adult Fgfr2fl/fl;Tex101‐iCre mice. Taken together, our results suggest that the Tex101‐iCre mouse line allows the inactivation of a floxed gene in spermatogenic cells in adult mice, which will facilitate the functional characterization of genes in normal spermatogenesis and male fertility. genesis 48:717–722, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Utilizing a recently identified Sox10 distal enhancer directing Cre expression, we report S4F:Cre, a transgenic mouse line capable of inducing recombination in oligodendroglia and all examined neural crest derived tissues. Assayed using R26R:LacZ reporter mice expression was detected in neural crest derived tissues including the forming facial skeleton, dorsal root ganglia, sympathetic ganglia, enteric nervous system, aortae, and melanoblasts, consistent with Sox10 expression. LacZ reporter expression was also detected in non‐neural crest derived tissues including the oligodendrocytes and the ventral neural tube. This line provides appreciable differences in Cre expression pattern from other transgenic mouse lines that mark neural crest populations, including additional populations defined by the expression of other SoxE proteins. The S4F:Cre transgenic line will thus serve as a powerful tool for lineage tracing, gene function characterization, and genome manipulation in these populations. genesis 47:765–770, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Accelerated vascular calcification occurs in several human diseases including diabetes and chronic kidney disease (CKD). In patients with CKD, vascular calcification is highly correlated with elevated serum phosphate levels. In vitro, elevated concentrations of phosphate induced vascular smooth muscle cell matrix mineralization, and the inorganic phosphate transporter‐1 (PiT‐1), was shown to be required. To determine the in vivo role of PiT‐1, mouse conditional and null alleles were generated. Here we show that the conditional allele, PiT‐1flox, which has loxP sites flanking exons 3 and 4, is homozygous viable. Cre‐mediated recombination resulted in a null allele that is homozygous lethal. Examination of early embryonic development revealed that the PiT‐1Δe3,4e3,4 embryos displayed anemia, a defect in yolk sac vasculature, and arrested growth. Thus, conditional and null PiT‐1 mouse alleles have been successfully generated and PiT‐1 has a necessary, nonredundant role in embryonic development. genesis 47:858–863, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Transthyretin (Ttr) is a thyroid hormone transport protein secreted by cells of the visceral yolk sac and fetal liver in developing embryos, and by hepatocytes and the choroid plexus epithelium of the brain in adult mice. Spatiotemporal localization of Ttr mRNA during embryogenesis suggested that Ttr regulatory elements might drive transgene expression throughout the visceral endoderm of early mouse embryos. We use Ttr cis‐regulatory elements to generate Ttr::RFP and Ttr::Cre strains of mice, driving red fluorescent protein (RFP) and a nuclear‐localized Cre recombinase, respectively. Visualization of RFP fluorescence in Ttr::RFP transgenics confirms reporter localization throughout the visceral endoderm in early embryos and in the visceral yolk sac and fetal liver of later stage embryos. Using both GFP‐based and LacZ‐based Cre reporter strains, we demonstrate that in Ttr::Cre transgenics, Cre‐mediated recombination occurs throughout the visceral endoderm. The Ttr::Cre strain can therefore be used as a tool for genetic modifications within the visceral endoderm lineage. genesis 47:447–455, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Sox9 expression defines cell progenitors in a variety of tissues during mouse embryogenesis. To establish a genetic tool for cell‐lineage tracing and gene‐function analysis, we generated mice in which the CreERT2 gene was targeted to the endogenous mouse Sox9 locus. In Sox9CreERT2/+;R26R embryos, tamoxifen activated Cre recombinase exclusively in Sox9‐expressing tissues. To determine the suitability of this mouse line for developmental stage‐specific gene recombination, we investigated the cellular origins of the cruciate ligaments of the knee joint and the limb tendons, in which precursor cells have not been defined. The cells in these tissues were labeled after tamoxifen treatment before or at the stage of chondrogenic mesenchymal condensation, indicating that ligament and tendon cells originated from Sox9‐expressing cells and that cell fate determination occurred at mesenchymal condensation. This mouse line is a valuable tool for the temporal genetic tracing of the progeny of, and inducible gene modification in Sox9‐expressing cells. genesis 48:635–644, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Here we describe the generation of an inducible Cre transgenic line allowing conditional mutagenesis in ovarian granulosa cells. We have expressed the tamoxifen inducible CreERT2 fusion protein from a Bacterial Artificial Chromosome (BAC) containing the regulatory elements of the hydroxysteroid (17‐beta) dehydrogenase 1 (Hsd17b1) gene. Hsd17b1‐iCreERT2 transgenic mice express the iCreERT2 fusion protein exclusively in ovarian granulosa cells. Recombination analysis at the genomic DNA level using mice with “floxed” Stat3 alleles showed no Cre activity in absence of tamoxifen whereas tamoxifen treatment induced Cre activity solely in the ovaries. Further characterization of Hsd17b1‐iCreERT2 mice using a Cre reporter line demonstrated that Cre‐mediated recombination was restricted to ovarian granulosa cells. Therefore, Hsd17b1‐iCreERT2 mice should be a useful tool to analyze the gene functions in ovarian granulosa cells. genesis 48:612–617, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Transgenic mice with a defined cell‐ or tissues‐specific expression of Cre‐recombinase are essential tools to study gene function. Here we report the generation and analysis of a transgenic mouse line (Cdx1::Cre) with restricted Cre‐expression from Cdx1 regulatory elements. The expression of Cre‐recombinase mimicked the endogenous expression pattern of Cdx1 at midgastrulation (from E7.5 to early headfold stage) inducing recombination in the three germlayers of the primitive streak region throughout the posterior embryo and caudal to the heart. This enables gene modifications to investigate patterning of the caudal embryo during and after gastrulation. Interestingly, we identified Cdx1 expression in the trophectoderm (TE) of blastocyst stage embryos. Concordantly, we detected extensive Cre‐mediated recombination in the polar TE and, although to lesser extent, in the mural TE. In E7.5 postimplantation embryos, almost all cells of the extraembryonic ectoderm (ExE), which are derived from the polar TE, are recombined although the ExE itself is negative for Cdx1 and Cre at this stage. These results indicate that Cdx1::Cre mice are also a valuable tool to study gene function in tissues essential for placental development. genesis 47:204–209, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Here we examine how BMP, Wnt, and FGF signaling modulate activin-induced mesendodermal differentiation of mouse ES cells grown under defined conditions in adherent monoculture. We monitor ES cells containing reporter genes for markers of primitive streak (PS) and its progeny and extend previous findings on the ability of increasing concentrations of activin to progressively induce more ES cell progeny to anterior PS and endodermal fates. We find that the number of Sox17- and Gsc-expressing cells increases with increasing activin concentration while the highest number of T-expressing cells is found at the lowest activin concentration. The expression of Gsc and other anterior markers induced by activin is prevented by treatment with BMP4, which induces T expression and subsequent mesodermal development. We show that canonical Wnt signaling is required only during late stages of activin-induced development of Sox17-expressing endodermal cells. Furthermore, Dkk1 treatment is less effective in reducing development of Sox17+ endodermal cells in adherent culture than in aggregate culture and appears to inhibit nodal-mediated induction of Sox17+ cells more effectively than activin-mediated induction. Notably, activin induction of Gsc-GFP+ cells appears refractory to inhibition of canonical Wnt signaling but shows a dependence on early as well as late FGF signaling. Additionally, we find a late dependence on FGF signaling during induction of Sox17+ cells by activin while BMP4-induced T expression requires FGF signaling in adherent but not aggregate culture. Lastly, we demonstrate that activin-induced definitive endoderm derived from mouse ES cells can incorporate into the developing foregut endoderm in vivo and adopt a mostly anterior foregut character after further culture in vitro.  相似文献   

15.
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The ciliated cells of the node of the mouse embryo contribute to the establishment of left–right patterning via generation of leftward laminar fluid flow and initiation of a left‐sided morphogen gradient. Here, we identify FOXJ1CreER2T mice in which expression of Cre recombinase is directed to ciliated node cells. The data demonstrate that foxj1 is expressed specifically in the node throughout the developmental window critical for left–right patterning. In transgenic embryos, Cre expression is detected by immunohistochemistry in ciliated cells of the node. Rosa26R reporter mice, in which expression of lacZ is activated only after Cre‐mediated recombination, demonstrate strong and uniform labeling at the node when crossed with FOXJ1CreER2T mice. Cell labeling occurred as early as 0‐ to 2‐somite stages, specifically within cells of the node, and recombination was highly efficient in response to tamoxifen. FOXJ1CreER2T transgenic mice represent a new genetic tool for the analysis of node‐specific gene expression and will also be valuable in the study of node cell lineage and temporal cell fate mapping. genesis 47:132–136, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
In the Cre–loxp system, expression level and activity of Cre recombinase in a Cre deleter line are critical because these determine not only the cell specificity of gene knockout (KO), but also the efficiency of Cre‐mediated excision in a specific cell lineage. Although the spatiotemporal expression pattern of a Cre transgene is usually defined upon the generation of the mouse line, the Cre excision efficiency in a specific targeted cell lineage is rarely evaluated and often assumed to be 100%. Incomplete excision can lead to highly variable phenotypes owing to mosaicism (i.e., coexistence of cells with the flox or the recombined flox allele) and this problem has long been overlooked. Here, we report that Stra8‐codon‐improved Cre recombinase (iCre), a transgenic allele expressing iCre under the control of the male germ cell‐specific Stra8 promoter, could efficiently delete one Mov10l1 flox allele in spermatogenic cells, whereas the excision was incomplete when two Mov10l1 flox alleles were present. The incomplete Cre‐mediated excision led to a testicular phenotype that was much less severe than that in the true conditional KO (inactivation, 100%) mice. Our findings suggest that it is essential to determine the efficiency of Cre excision when Cre–loxp system is used for deleting genes in a specific cell lineage and the Cre; genelox/Δ genotype should be used to evaluate phenotypes instead of Cre; genelox/lox owing to the fact that the latter usually bears incomplete deletion of the flox allele(s). genesis 51:481–490. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Conditional gene knockout using the Cre/loxP system is instrumental in advancing our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature that recombination mediated by some Cre transgenes can occur in unexpected tissues. Dermo1‐Cre (Twist2‐Cre) has been widely used to target skeletal lineage cells as well as other mesoderm‐derived cells. Here we report that Dermo1‐Cre exhibits spontaneous male germline recombination activity leading to a Cre‐mediated recombination of a floxed Ptk2 (Protein tyrosine kinase 2, also known as Fak [Focal adhesion kinase]) allele but not a floxed Rb1cc1 (RB1 inducible coiled‐coil 1, also known as Fip200 [FAK‐family Interacting Protein of 200 kDa]) allele at high frequency. This ectopic germline activity of Dermo1‐Cre occurred in all or none manner in a given litter. We demonstrated that the occurrence of germline recombination activity of Dermo1‐Cre transgene can be avoided by using female mice as parental Dermo1‐Cre carriers.  相似文献   

19.
The mouse homeobox gene, Gbx2, is expressed in discreet domains in the neural tube and plays a key role in forebrain and hindbrain development. Previous studies have demonstrated that mutual inhibition between Gbx2 and Otx2, which are respectively expressed in the anterior and posterior parts of the neural plate, positions the prospective midbrain–hindbrain junction. We describe here a conditional Gbx2 gain‐of‐function transgenic mouse line, Gbx2‐GOF, which expresses Gbx2 and red fluorescence protein, mCherry, upon Cre‐mediated recombination. In the absence of Cre, β‐galactosidase is broadly expressed in mouse embryos and adult brains carrying the transgene. By combining Gbx2‐GOF and En1Cre knock‐in allele, we activated expression of Gbx2 and mCherry throughout the mesencephalon (mes) and rhombomere 1 (r1). The ectopic expression of Gbx2 causes an anterior shift of the mes/r1 junction at embryonic day 10.5. Interestingly, we found that persistent expression of Gbx2 throughout the mes/r1 region largely abolishes expression of the isthmic organizer gene Fgf8, leading to deletion of the midbrain and cerebellum at later stages. Our data suggest that the juxtaposition of the expression domains of Gbx2 and Otx2 within the mes/r1 area is essential for the maintenance of Fgf8 expression. Furthermore, the Gbx2‐GOF transgenic line is suitable for functional study of Gbx2 during development. genesis 47:667–673, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号