首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate head segmentation has attracted the attention of comparative and evolutionary morphologists for centuries, given its importance for understanding the developmental body plan of vertebrates and its evolutionary origin. In particular, the segmentation of the mesoderm is central to the problem. The shark embryo has provided a canonical morphological scheme of the head, with its epithelialized coelomic cavities (head cavities), which have often been regarded as head somites. To understand the evolutionary significance of the head cavities, the embryonic development of the mesoderm was investigated at the morphological and histological levels in the shark, Scyliorhinus torazame. Unlike somites and some enterocoelic mesodermal components in other vertebrates, the head cavities in S. torazame appeared as irregular cyst(s) in the originally unsegmented mesenchymal head mesoderm, and not via segmentation of an undivided coelom. The mandibular cavity appeared first in the paraxial part of the mandibular mesoderm, followed by the hyoid cavity, and the premandibular cavity was the last to form. The prechordal plate was recognized as a rhomboid roof of the preoral gut, continuous with the rostral notochord, and was divided anteroposteriorly into two parts by the growth of the hypothalamic primordium. Of those, the posterior part was likely to differentiate into the premandibular cavity, and the anterior part disappeared later. The head cavities and somites in the trunk exhibited significant differences, in terms of histological appearance and timing of differentiation. The mandibular cavity developed a rostral process secondarily; its homology to the anterior cavity reported in some elasmobranch embryos is discussed.  相似文献   

2.
Due to the peculiar morphology of its preotic head, lampreys have long been treated as an intermediate animal which links amphioxus and gnathostomes. To reevaluate the segmental theory of classical comparative embryology, mesodermal development was observed in embryos of a lamprey, Lampetra japonica, by scanning electron microscopy and immunohistochemistry. Signs of segmentation are visible in future postotic somites at an early neurula stage, whereas the rostral mesoderm is unsegmented and rostromedially confluent with the prechordal plate. The premandibular and mandibular mesoderm develop from the prechordal plate in a caudal to rostral direction and can be called the preaxial mesoderm as opposed to the caudally developing gastral mesoderm. With the exception of the premandibular mesoderm, the head mesodermal sheet is secondarily regionalized by the otocyst and pharyngeal pouches into the mandibular mesoderm, hyoid mesoderm, and somite 0. The head mesodermal components never develop into cephalic myotomes, but the latter develop only from postotic somites. These results show that the lamprey embryo shows a typical vertebrate phylotype and that the basic mesodermal configuration of vertebrates already existed prior to the split of agnatha-gnathostomata; lamprey does not represent an intermediate state between amphioxus and gnathostomes. Unlike interpretations of theories of head segmentation that the mesodermal segments are primarily equivalent along the axis, there is no evidence in vertebrate embryos for the presence of preotic myotomes. We conclude that mesomere-based theories of head metamerism are inappropriate and that the formulated vertebrate head should possess the distinction between primarily unsegmented head mesoderm which includes preaxial components at least in part and somites in the trunk which are shared in all the known vertebrate embryos as the vertebrate phylotype.  相似文献   

3.
Summary Light- and electron-microscopic studies were performed on those tissues that are supposed to deliver the anlagen of the extrinsic ocular muscles. Since the blastemata of the ocular muscles can be traced back into the prechordal mesoderm, it can be concluded that this tissue is the source of these muscles. In embryos from stage 8–10 according to Hamburger and Hamilton (HH) cells are found to detach from the lateral border of the prechordal mesoderm. These cells are assumed to give rise to the trochlearis and abducens musculature. In stage-14 embryos the paired premandibular cavity arises within the lateral wings of the prechordal mesenchyme. In 4-day embryos the lateral wall of each premandibular cavity becomes denser forming a premuscular mass, which is subdivided into the anlagen of the oculomotorius muscles in 5-day embryos. The head cavities are not homologous to somites because their structures, origins and sites are very different.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (CH 44/6-1).This paper is dedicated to Prof. Dr. med. Dr. h.c. Hermann Voss on the occasion of his 90th birthday.  相似文献   

4.
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite‐like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus‐like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote‐like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.  相似文献   

5.
We have developed a whole-mount immunocytochemical method for Xenopus and used it to map the expression of the intermediate filament protein vimentin during early embryogenesis. We used two monoclonal antibodies, 14h7 and RV202. Both label vimentin filaments in Xenopus A6 cells, RV202 reacts specifically with vimentin (Mr, 55 x 10(3] on Western blots of A6 cells and embryos. 14h7 reacts with vimentin and a second, insoluble polypeptide of 57 x 10(3) Mr found in A6 cells. The 57 x 10(3) Mr polypeptide appears to be an intermediate filament protein immunochemically related to vimentin. In the whole-mount embryo, we first found vimentin at the time of neural tube closure (stage 19) in cells located at the lateral margins of the neural tube. By stage 26, these cells, which are presumably radial glia, are present along the entire length of the neural tube and in the tail bud. Cells in the optic vesicles express vimentin by stage 24. Vimentin-expressing mesenchymal cells appear on the surface of the somites at stage 22/23; these cells appear first on anterior somites and on progressively more posterior somites as development continues. Beginning at stage 24, vimentin appears in mesenchymal cells located ventral to the somites and associated with the pronephric ducts; these ventral cells first appear below the anterior somites and later appear below more posterior somites. The dorsal fin mesenchyme expresses vimentin at stage 26. In the head, both mesodermally-derived and neural-crest-derived mesenchymal tissues express vimentin by stage 26. These include the mesenchyme of the branchial arches, the mandibular arch, the corneal epithelium, the eye, the meninges and mesenchyme surrounding the otic vesicle. By stage 33, vimentin-expressing mesenchymal cells are present in the pericardial cavity and line the vitelline veins. Vimentin expression appears to be a marker for the differentiation of a subset of central nervous system cells and of head and body mesenchyme in the early Xenopus embryo.  相似文献   

6.
The most rostral cephalic crest cells in the chick embryo first populate ubiquitously in the rostroventral head. Before the influx of crest cells, the ventral head ectoderm expresses Fgf8 in two domains that correspond to the future mandibular arch. Bmp4 is expressed rostral and caudal to these domains. The rostral part of the Bmp4 domain develops into the rostral end of the maxillary process that corresponds to the transition between the maxillomandibular and premandibular regions. Thus, the distribution patterns of FGF8 and BMP4 appear to foreshadow the maxillomandibular region in the head ectoderm. In the ectomesenchyme of the pharyngula embryo, expression patterns of some homeobox genes overlap the distribution of their upstream growth factors. Dlx1 and Barx1, the targets of FGF8, are expressed in the mandibular ectomesenchyme, and Msx1, the target of BMP4, in its distal regions. Ectopic applications of FGF8 lead to shifted expression of the target genes as well as repatterning of the craniofacial primordia and of the trigeminal nerve branches. Focal injection of a lipophilic dye, DiI, showed that this shift was at least in part due to the posterior transformation of the original premandibular ectomesenchyme into the mandible, caused by the changed distribution of FGF8 that defines the mandibular region. We conclude that FGF8 in the early ectoderm defines the maxillomandibular region of the prepharyngula embryo, through epithelial-mesenchymal interactions and subsequent upregulation of homeobox genes in the local mesenchyme. BMP4 in the ventral ectoderm appears to limit the anterior expression of Fgf8. Ectopic application of BMP4 consistently diminished part of the mandibular arch.  相似文献   

7.
On the basis of its positional relations to the neuromast and branchial-arch systems, a greater part of the cephalic exoskeleton in teleostome fishes is suggested to have evolved from dermal elements which once provided support for gill-covers. More precisely, the following results are arrived at: parts of the decking of the ethmoid region of the endocranium stem from the branchiostegic exoskeleton of the terminal, or first, branchial unit; the external cheek-plates are made up of modified branchiostegic components of the premandibular (second), mandibular (third), and hyoid (fourth) branchial units; the lower jaws include inferior branchiostegic elements of the mandibular and hyoid branchial units; those branchiostegic elements of the hyoid branchial unit which remained free of the external cheek-plates and the lower jaws gave origin to the exoskeletal support of the hyoidean opercula as well as to the two rows of submandibular bones.  相似文献   

8.
The vertebrate jaw is a mandibular-arch derivative, and is regarded as the synapomorphy that defines the gnathostomes. Previous studies (Kuratani et al., Phil. Trans. Roy. Soc. 356:15, 2001; Shigetani et al., Science 296:1319, 2002) have suggested that the oral apparatus of the lamprey is derived from both the mandibular and premandibular regions, and that the jaw has arisen as a secondary narrowing of the oral patterning mechanism into the mandibular-arch domain. The heterotopy theory of jaw evolution states that the lamprey upper lip is a premandibular element, leaving further questions unanswered as to the homology of the trabecula in the lamprey and gnathostomes, and to the morphological nature of the muscles in the upper lip. Using focal injection of vital dyes into the cheek process core of lamprey embryos, we found that the upper lip muscle and trabecula are both derived from mandibular mesoderm. Secondary movement of the muscle primordium is also evident when the expression of the early muscle marker gene, LjMA2, is visualized. A nerve-fiber labeling study revealed that the upper lip muscle-innervating neurons are located in the rostral part of the brain stem, where the trigeminal motor nuclei are not found in gnathostomes. We conclude that the lamprey upper lip is composed of premandibular ectomesenchyme and a lamprey-specific muscle component derived from the mandibular mesoderm innervated by lamprey-specific motoneurons. Furthermore, the lamprey trabecula is most likely equivalent to a mesodermally derived neurocranial element, similar to the parachordal element in gnathostomes, rather than to the neural-crest-derived prechordal element.  相似文献   

9.
10.
Craniofacial mesenchyme is heterogeneous with respect to origins (e.g., paraxial mesoderm, lateral mesoderm, prechordal mesoderm, neural crest, placodes) and fates. The many disparate cell migratory behaviors exhibited by these mesenchymal populations have only recently been revealed, necessitating a reappraisal of how these different populations come together to form specific tissues and organs. The objectives of this review are to characterize the diverse migratory behaviors of craniofacial mesenchymal subpopulations, to define the interactions necessary for their assembly into tissues, and to discuss these data in the context of recent discoveries concerning the molecular basis of craniofacial development. The application of antibodies that recognize features unique to migrating neural crest cells has verified the results of previous transplantation experiments in birds and shown the migratory pathways in murine embryos to be similar. Within paraxial or prechordal mesoderm arise myoblasts that are precursors of craniofacial voluntary muscles. These cells migrate, usually en masse, to the sites where overt muscle differentiation occurs. Whereas the initial alignment of primary myotubes presages the fiber orientation seen in the adult, the time at which individual myotubes appear relative to the formation of discrete, individual muscle bundles and attachments with connective tissues varies with each muscle. The pattern of primary myotube alignment is determined by local connective tissue-forming mesenchyme and is independent of the source of myoblasts. Also found within paraxial and lateral mesodermal tissues are endothelial precursors (angioblasts). Some of these aggregate in situ, forming vesicles that coalesce with ingrowing endothelial cords. Others are highly invasive, moving in all directions and infiltrating tissues such as the neural crest, which lacks endogenous angioblasts. The patterns of initial blood vessel formation in the head are also determined by local connective tissue-forming mesenchyme and are independent of the origin of endothelial cells. Neural crest cells, which constitute the predominant connective tissue-forming mesenchyme in the facial, oral, and branchial regions of the head, acquire a regional identity while still part of the neural epithelium, and carry this with them as they move into the mandibular, hyoid, and branchial arches. Some of these regionally unique propensities correspond spatially to genetic and cellular patterns unique to rhombomeres, although the links between gene expression and crest population phenotypes are not yet known. In contrast, the inherent spatial programming of those crest cells that populate the maxillary and frontonasal regions is altered by their proximity to the prosencephalon.  相似文献   

11.
We have analyzed the spatial and temporal patterns of B lymphocyte-induced maturation protein-1 (Blimp-1) expression during mouse embryonic development. Blimp-1 expression is induced early in the anterior definitive endoderm, mesoderm of head process, and prechordal plate. In ectoderm-derived tissues at later stages, Blimp-1 expression is found in the primitive photoreceptors of neural retina, in differentiated epithelial cells of epidermis, tongue, oral and nasal cavities, and in the precursors of internal root sheaths of hair follicles. In mesoderm-derived tissues, Blimp-1 expression is observed in splanchnopleure, a subset of somatopleure-derived cells in limb buds, and myotomes of somites. Blimp-1 is also expressed in mesenchyme of developing hand plates, digits, branchial arches, nasal processes, and external genitalia. Blimp-1 is present in mesenchyme-derived chondroblasts, supporting cells of taste buds, and papilla of teeth, hair follicles and taste buds. In endoderm-derived tissues, Blimp-1 expression in the foregut region is restricted to a subset of epithelial cells at the headfold stage while expression in the endodermal epithelium of midgut and hindgut persists from the headfold stage to birth. Finally, Blimp-1 is expressed in the migrating primordial germ cells.  相似文献   

12.
Patterning of avian craniofacial muscles   总被引:3,自引:0,他引:3  
Vertebrate voluntary muscles are composed of myotubes and connective tissue cells. These two cell types have different embryonic origins: myogenic cells arise from paraxial mesoderm, while in the head many of the connective tissues are formed by neural crest cells. The objective of this research was to study interactions between heterotopically transplanted trunk myotomal cells and presumptive connective tissue-forming cephalic neural crest mesenchyme. Presumptive or newly formed cervical somites from quail embryos were implanted lateral to the midbrain of chick hosts prior to the onset of neural crest emigration. Hosts were sacrificed between 7 and 12 days of incubation, and sections examined for the presence of quail cells. Some grafted tissues differentiated in situ, forming ectopic skeletal, connective, and muscle tissues. However, many myotomal cells broke away from the implant, became integrated into adjacent neural crest mesenchyme, and subsequently formed normal extrinsic ocular or jaw muscles. In these muscles it was evident that only the myogenic populations were derived from grafted trunk cells. Ancillary findings were that grafted trunk paraxial mesoderm frequently interfered with the movement of neural crest cells which form the corneal posterior epithelial and stromal tissues, and that some grafted cells formed ectopic intramembranous bones adjacent to the eye. These results verify that presumptive connective tissue-forming mesenchyme derived from the neural crest imparts spatial patterning information upon myogenic cells that invade it. Moreover, interactions between myotomal cells and both lateral plate somatic mesoderm in the trunk and neural crest mesenchyme in the head appear to operate according to similar mechanisms.  相似文献   

13.
14.
15.
16.
17.
18.
For testing the autonomic differentiation abilities of dorsal equatorial blastomeres of 32-cell Xenopus embryos, their roles in head formation in normal development and the organizer-inducing capabilities of the dorsal-most vegetal cells, interspecific transplantations were made using Xenopus borealis and X. laevis . When transplanted into the ventral region, the dorsal blastomeres produced descendants that differentiated into prechordal mesoderm, notochord and somites in the recipient according to their fates. They induced formation of the secondary embryo with the head and tail. The prechordal mesoderm and notochord in the secondary structure consisted of progeny of the graft, whereas somites and the CNS were chimeric and the pronephros was composed of host cells. Replacement of the dorsal blastomeres by ventral equatorial cells caused complete arrest of head formation in the recipient. Without exception, the notochord was completely absent or very thin. These results confirm the assumption that the presumptive head organizer in the Xenopus embryo is localized in the dorsal equatorial region at the 32-cell stage and comes into existence not under the inductive influence of the dorsal-most vegetal cells, but owing to allocation of morphogenetic determinants residing in the fertilized egg to the dorsal equatorial blastomeres of the 32-cell embryo.  相似文献   

19.
The head-trunk interface lies at the occipito-cervical boundary, which corresponds to the somite 5/6 level. Previous studies have demonstrated that neural crest cells also behave differently either side of this boundary and that this may be due to intrinsic differences between cranial and trunk crest. However, it is also possible that some of the observed differences between cranial and trunk crest are assigned by environmental cues. We have therefore scrutinised the behaviour of the neural crest cells generated either side of the occipito-cervical boundary in chick and, interestingly, find that both behave in a truncal fashion by traversing the anterior half of their adjacent somites. Furthermore, although not previously described, we find that transient DRGs form opposite somites 4 and 5. Crest cells produced anterior of the somite 3/4 boundary avoid the somites and behave in a non-truncal fashion; these cells populate the pharyngeal arches, and thus contribute to the developing head. We have further shown, via somite transplantations, that differential behaviour of the posterior versus anterior occipital crest is assigned by the somites. If somites 1 to 3 are replaced by trunk somites, then the anterior occipital crest will behave in a truncal fashion by invading the somites. Correspondingly, if these anterior occipital somites are transplanted in place of trunk somites, they perturb the migration of trunk crest. Thus, for the neural crest, the head-trunk interface does not lie at the occipito-cervical boundary, but rather lies at the somite 3/4 level and is defined by the somites. The fact that this boundary lies at the somite 3/4 level in chick is significant as it reflects the more ancient posterior occipital boundary; in fish, only the first three somites contribute to the occipital bone.  相似文献   

20.
Attainment of the biting jaw is regarded as one of the major novelties in the early history of vertebrates. Based on a comparison between lamprey and gnathostome embryos, evolutionary developmental studies have tried to explain this novelty as changes in the developmental patterning of the mandibular arch, the rostralmost pharyngeal arch, at the molecular and cellular levels. On the other hand, classical theories in the field of comparative morphology assumed the involvement of hypothetical premandibular arch(es) that ancestral animals would have possessed rostral to the mandibular arch, in the transition from agnathan to gnathostome states. These theories are highly biased toward the segmental scheme of the vertebrate head, and the concept of premandibular “arches” is no longer accepted by the current understanding. Instead, the premandibular domain has now become of interest in the understanding of cranial development, especially in its rostral part. As newer theories that consider involvement of the premandibular domain, the neoclassical and heterotopy theories are here compared from evolutionary developmental perspectives, in conjunction with the development of nasal and hypophyseal placodes, in the context of the evolutionary acquisition of the jaw. Given recent advances in understanding of the lamprey development, evolution of the Dlx code is also discussed together with the evolutionary scenario of jaw acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号