首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seminiferous tubules and the excurrent ducts of the mammalian testis are physiologically separated from the mesenchymal tissues and the blood and lymph system by a special structural barrier to paracellular translocations of molecules and particles: the “blood–testis barrier”, formed by junctions connecting Sertoli cells with each other and with spermatogonial cells. In combined biochemical as well as light and electron microscopical studies we systematically determine the molecules located in the adhering junctions of adult mammalian (human, bovine, porcine, murine, i.e., rat and mouse) testis. We show that the seminiferous epithelium does not contain desmosomes, or “desmosome-like” junctions, nor any of the desmosome-specific marker molecules and that the adhering junctions of tubules and ductules are fundamentally different. While the ductules contain classical epithelial cell layers with E-cadherin-based adherens junctions (AJs) and typical desmosomes, the Sertoli cells of the tubules lack desmosomes and “desmosome-like” junctions but are connected by morphologically different forms of AJs. These junctions are based on N-cadherin anchored in cytoplasmic plaques, which in some subforms appear thick and dense but in other subforms contain only scarce and loosely arranged plaque structures formed by α- and β-catenin, proteins p120, p0071 and plakoglobin, together with a member of the striatin family and also, in rodents, the proteins ZO-1 and myozap. These N-cadherin-based AJs also include two novel types of junctions: the “areae adhaerentes”, i.e., variously-sized, often very large cell-cell contacts and small sieve-plate-like AJs perforated by cytoplasm-to-cytoplasm channels of 5–7 nm internal diameter (“cribelliform junctions”). We emphasize the unique character of this epithelium that totally lacks major epithelial marker molecules and structures such as keratin filaments and desmosomal elements as well as EpCAM- and PERP-containing junctions. We also discuss the nature, development and possible functions of these junctions.  相似文献   

2.
γ-Tubulin-like molecules in the mouse duodenal epithelium   总被引:2,自引:2,他引:0  
A mouse monoclonal antibody (G9, Horio et al. in Cell Motil Cytoskel 44:284–295, 1999) that was raised against the γ-tubulin from a fission yeast, Schizosaccharomyces pombe, showed a unique staining in the mouse small intestine. Similar to another anti-γ-tubulin antibody that is commercially available, G9 showed typical dot-like staining corresponding to the microtubule-organizing center in the free cells of the epithelium and the connective tissue under it. In addition, G9 stained the cell–cell contacts in the epithelium. This stained region was not bicellular but tricellular junctions of the enterocytes. This staining was unique to G9 and was diminished on the sample of the mouse small intestine, which had lost most of its filamentous microtubules through the preparation process. The tricellular junction is thought to be the weakest point of the epithelial barrier, and no other junctional structures have been identified except for the central sealing elements extending from the tight junctions between the two cells. Our results suggest the existence of a new molecule underlying the tricellular junctions, which may relate to γ-tubulin and the microtubules.  相似文献   

3.
Adjudin, an analogue of lonidamine, affects adhesion between Sertoli and most germ cells, resulting in reversible infertility in rats, rabbits and dogs. Previous studies have described the apical ectoplasmic specialization, a hybrid-type of Sertoli cell–elongating/elongated spermatid adhesive junction, as a key target of adjudin. In this study, we ask if the function of the blood–testis barrier which is constituted by co-existing tight junctions, desmosome-gap junctions and basal ectoplasmic specializations can be maintained when the seminiferous epithelium is under assault by adjudin. We report herein that administration of a single oral dose of adjudin to adult rats increased the levels of several tight junction and basal ectoplasmic specialization proteins during germ cell loss from the seminiferous epithelium. These findings were corroborated by a functional in vitro experiment when Sertoli cells were cultured on Matrigel?-coated bicameral units in the presence of adjudin and transepithelial electrical resistance was quantified across the epithelium. Indeed, the Sertoli cell permeability barrier was shown to become tighter after adjudin treatment as evidenced by an increase in transepithelial electrical resistance. Equally important, the blood–testis barrier in adjudin-treated rats was shown to be intact 2 weeks post-treatment when its integrity was monitored following vascular administration of inulin-fluorescein isothiocyanate which failed to permeate past the barrier and enter into the adluminal compartment. These results illustrate that a unique mechanism exists to maintain blood–testis barrier integrity at all costs, irrespective of the presence of germ cells in the seminiferous epithelium of the testis.  相似文献   

4.
The Pkd2 gene encodes an integral protein (~130 kDa), named polycystin-2 (PC-2). PC-2 is mainly involved in autosomal dominant polycystic kidney disease. Recently, polycystin-1/polycystin-2 complex has been shown to act as an adhesion complex mediating or regulating cell–cell or cell–matrix adhesion, suggesting that PC-2 may play a role in cell–cell/cell–matrix interactions. Here, we knocked down the expression of Pkd2 gene with small interfering RNAs (siRNAs) in the mouse melanoma cells (B16 cells), indicating that the cells transfected with the targeted siRNAs significantly suppressed cell–cell adhesion, but not cell–matrix adhesion, compared to the cells transfected with non-targeted control (NC) siRNA. This study provides the first directly functional evidence that PC-2 mediates cell–cell adhesion. Furthermore, we demonstrated that PC-2 modulated cell–cell adhesion may be, at least partially, associated with E-cadherin. Collectively, these findings for the first time showed that PC-2 may mediate cell–cell adhesion, at least partially, through E-cadherin.  相似文献   

5.
The durations of the phases of the cell cycle were measured at different levels in the jejunal crypts of male Balb/c mice. A mean cell cycle time of 12.3 h was found for the whole crypt. In cell positions 1 and 2, the cell cycle time was 16.7 h, and this time steadily decreased to a value of between 10 and 11 h for cell positions above 11. It is concluded that basally situated crypt cells in the mouse are cycling relatively slowly, and that they form the functional stem cell pool for the crypt. These cells may also compose the potential stem cell pool which repopulates the crypt after death of proliferative cells.  相似文献   

6.
《FEBS letters》1986,196(2):309-314
Oestradiol-17 β (E2) treatment of the ovariectomized mouse results in a synchronised wave of cell proliferation in the uterine luminal epithelium. At the peak of DNA synthesis the mRNA level of the c-rasH protooncogene and ornithine decarboxylase were significantly increased. Progesterone treatment completely inhibits the E2 induced wave of DNA synthesis but does not greatly influence the level of these 2 mRNAs. Thus in the uterine luminal epithelium E2 regulates the level of ornithine decarboxylase and c-rasH independently of cell proliferation.  相似文献   

7.
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion.  相似文献   

8.
9.
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood–brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60 s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress.  相似文献   

10.
11.
The objective of this investigation was to evaluate the frequency of chromosomal aberrations expressed as micronuclei (MN) in 4–8 cell embryos generated by gamma-irradiation of female mice in the absence and in the presence of vitamin C. Female NMRI mice were whole body exposed to 4 Gy gamma-irradiation after intraperitoneal (i.p.) injection of pregnant mare’s serum gonadotrophin (PMSG) followed by injection of human chorionic gonadotrophin (HCG) and mating with non-irradiated NMRI male mice. Pregnant animals were sacrificed and embryos flushed from the oviducts and fixed on slides. Cells were treated for MN observation using standard method. To investigate the protective effect of vitamin C (ascorbic acid) on the frequency of MN, 100 mg/kg vitamin C was i.p. injected 1 h before irradiation. Results show that the frequency of MN generated in the embryos of irradiated mother compared to those of control in the non-irradiated group increased dramatically (P < 0.001). Frequency of MN in embryos generated in irradiated female mice treated with vitamin C dramatically and statistically decreased relative to the frequency observed in the irradiation only group (P < 0.001). This decrease returned the combined treatment group to a level that was not statistically different from the controls (P > 0.05). Thus, irradiation of preovulatory stage oocytes leads to stable chromosome abnormalities expressed as micronuclei in successive preimplantation embryos. Vitamin C reduces these clastogenic effects of radiation in preovulatory oocytes and thus the reduced frequency of MN in embryos is probably due to its antioxidation and radical scavenging properties.  相似文献   

12.
 Fibroblast growth factor 2 (FGF-2), which occurs in various isoforms both species and tissue specifically, regulates cell proliferation and differentiation via a dual receptor system consisting of heparan sulphate proteoglycans and receptor tyrosine kinases (FGFRs). This study demonstrates for the first time the distribution pattern of FGF-2 and the receptors FGFR 1–4 in the normal seminiferous epithelium of adult men. In western blot analyses, the polyclonal antibody, anti-FGF-2, shows two immunoreactive bands at 18 and 24 kDa. On paraffin sections, positive immunoreaction occurs within the cytoplasm of spermatogonia. The distribution pattern of the polyclonal anti-FGFR 1–4 antibodies is as follows: anti-FGFR-1 (one 68-kDa band) stains nuclei and cytoplasm of spermatogonia; anti-FGFR-3 (five bands at 68, 78, 105, 125 and 145 kDa) stains the nuclei of all germ cells except those of elongated spermatids; and anti-FGFR-4 (one 48-kDa band) stains the cytoplasm of primary pachytene spermatocytes. We were unable to demonstrate FGFR-2 immunoreactivity either in western blot analysis or on paraffin sections. This distribution pattern suggests that FGF-2 in spermatogonia is involved in the autocrine and paracrine regulation of the proliferation and differentiation of spermatogonia and spermatocytes via the receptors FGFR-1, FGFR-3 and FGFR-4. Accepted: 23 December 1997  相似文献   

13.
Connexin 26 (Cx26) and connexin 30 (Cx30) form hemichannels that release ATP from the endolymphatic surface of cochlear supporting and epithelial cells and also form gap junction (GJ) channels that allow the concomitant intercellular diffusion of Ca2+ mobilizing second messengers. Released ATP in turn activates G-protein coupled P2Y2 and P2Y4 receptors, PLC-dependent generation of IP3, release of Ca2+ from intracellular stores, instigating the regenerative propagation of intercellular Ca2+ signals (ICS). The range of ICS propagation is sensitive to the concentration of extracellular divalent cations and activity of ectonucleotidases. Here, the expression patterns of Cx26 and Cx30 were characterized in postnatal cochlear tissues obtained from mice aged between P5 and P6. The expression gradient along the longitudinal axis of the cochlea, decreasing from the basal to the apical cochlear turn (CT), was more pronounced in outer sulcus (OS) cells than in inner sulcus (IS) cells. GJ-mediated dye coupling was maximal in OS cells of the basal CT, inhibited by the nonselective connexin channel blocker carbenoxolone (CBX) and absent in hair cells. Photostimulating OS cells with caged inositol (3,4,5) tri-phosphate (IP3) resulted in transfer of ICS in the lateral direction, from OS cells to IS cells across the hair cell region (HCR) of medial and basal CTs. ICS transfer in the opposite (medial) direction, from IS cells photostimulated with caged IP3 to OS cells, occurred mostly in the basal CT. In addition, OS cells displayed impressive rhythmic activity with oscillations of cytosolic free Ca2+ concentration ([Ca2+]i) coordinated by the propagation of Ca2+ wavefronts sweeping repeatedly through the same tissue area along the coiling axis of the cochlea. Oscillations evoked by uncaging IP3 or by applying ATP differed greatly, by as much as one order of magnitude, in frequency and waveform rise time. ICS evoked by direct application of ATP propagated along convoluted cellular paths in the OS, which often branched and changed dynamically over time. Potential implications of these findings are discussed in the context of developmental regulation and cochlear pathophysiology.  相似文献   

14.

Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell–cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell–cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell–cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell–cell signaling to highlight their potential role in future CVTE strategies.

  相似文献   

15.
The integrin α9β1 is one of the recently identified integrins whose expression is restricted to specialized tissues. Its exact function is still unknown. In the present study, we have analyzed the expression of the α9 subunit in human fetal and adult small intestinal and colonic epithelia as well as in intestinal cell lines by indirect immunofluorescence, immunoprecipitation, Western blot, and Northern blot. In intact tissues, the antigen was restricted to the basolateral domain of epithelial cells in intestinal crypts at the fetal stage and was absent in the adult. The α9β1 integrin was also detected in the intestinal cell lines HIEC-6 and Caco-2/15. The presence of α9β1 in HIEC-6 was found to be consistent with their proliferative crypt-like status. In Caco-2/15 cells, the integrin was present at high levels in proliferating cells but was downregulated when cells cease to grow and undertake their differentiation. EGF treatment, which is known to maintain Caco-2/15 cells in a proliferative state, resulted in higher levels of α9 as compared to control cells. Taken together, these observations suggest a relation between integrin α9β1 expression and proliferation in human intestinal cells. J. Cell. Biochem. 71:536–545, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Vimentin, type III intermediate filament, has stage-specific localization in the Sertoli cell. In the rat, during stages I–V and XI–XIV of the seminiferous epithelium, vimentin is localized in the perinuclear area with filaments projecting into the apical region toward the developing germ cells. These filaments decrease in length at stages VI–VII with perinuclear staining in stages VIII–IX, when spermiation occurs. Our earlier studies following 17β-estradiol treatment to adult male rats demonstrated an increase in germ cell apoptosis, spermiation failure and disruption of Sertoli cell microfilaments and microtubules. The present study was undertaken to determine the stage-specific distribution of vimentin and its involvement in spermiation failure and germ cell apoptosis. Immunofluorescence studies revealed that in contrast to the perinuclear localization with small extensions in control stages VII–IX, long extensions radiating apically to the spermatids in deep recess were observed in the treated group. Immunoprecipitation studies showed marked absence of phosphorylated vimentin in stages VII–VIII in the treated group. Further, localization of plectin, cytoskeletal linker protein, showed decrease in all the stages of spermatogenesis following estradiol treatment. Interestingly, for the first time the localization of plectin in the tubulobulbar complex was observed. In conclusion, the study suggests that estradiol treatment leads to an effect on vimentin phosphorylation, which could have inhibited the disassembly of vimentin leading to retention of apical projection in stages VII–VIII. These effects could be presumably due to a decrease in plectin, affecting the reorganization of vimentin and therefore the apical movement of spermatids, leading to spermiation failure.  相似文献   

17.
18.
In this paper, the Sequential Collapse Model (SCM) for protein folding pathways is applied to investigate the location of the non-local contacts in the intrinsically disordered state of α-synuclein, a protein implicated in the onset and spreading of several serious neurodegenerative diseases. The model relies on the entropic cost of forming protein loops due to self-crowding effects, and the protein sequence to determine contact location and stability. It is found that the model predicts the existence of several possible non-local contacts, and the location of the non-local contacts is consistent with existing experimental evidence. The bearing of these findings on the pathogenic mechanism and its regulation is discussed.  相似文献   

19.
The proteins synthesized in the mitochondria of mouse and human cells grown in tissue culture were examined by electrophoresis in polyacrylamide gels. The proteins were labelled by incubating the cells in the presence of [(35)S]methionine and an inhibitor of cytoplasmic protein synthesis (emetine or cycloheximide). A detailed comparison between the labelled products of mouse and human mitochondrial protein synthesis was made possible by developing radioautograms after exposure to slab-electrophoresis gels. Patterns obtained for different cell types of the same species were extremely similar, whereas reproducible differences were observed on comparison of the profiles obtained for mouse and human cells. Four human-mouse somatic cell hybrids were examined, and in each one only components corresponding to mouse mitochondrially synthesized proteins were detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号