首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ethanol-induced oxidative stress in rat astrocytes: role of HSP70   总被引:6,自引:0,他引:6  
Ethanol intake is associated with increase in lipid peroxidation and formation of reactive oxygen species in different cerebral areas, in neurons as well as in astrocytes. The latter's integrity is essential for the normal growth of neurons. In previous studies we observed, in different cerebral areas of both acutely and chronically ethanol-treated rats, correlation between ethanol-induced oxidative stress and the increased expression of HSP70 (70 kDa heat shock proteins), chaperonins having a protective and stabilizing effect on stress–induced cell injury. In this study we examined, in vitro, the role of HSP70 on chronically ethanol-treated rat astrocytes by transfection with an anti-HSP70 antisense oligonucleotide. The results show that treatment with ethanol, from 50 to 100 mmol/L, induces a dose-dependent increase in the production of reactive oxygen species and of HSP70 levels, together with an impairment of the respiratory chain activity and a decrease in cell viability. In addition, our data indicate a drastic reduction of cellular metabolism in HSP70-deprived astrocytes, particularly when these cells were also ethanol-treated. In fact, transfection with HSP70 antisense induced moderate oxidative damage in control astrocytes and, consequently, a drastic decrease in the viability of ethanol-treated cells, with the mitochondrial functionality being particularly affected. Our results confirm that heat shock proteins confer a survival advantage to the astrocytes, preventing oxidative damage and nuclear DNA damage as well, and suggest the development of new drugs exerting a cytoprotective role either in physiological, or pathological conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
Various cell cycle regulators control and coordinate the process of cell cycle. Because of the crucial involvement of CDC2, Cyclin B1, Cdc25c, and p21 in cell cycle regulation, the present study was aimed to investigate the possibility that selenium (Se)-induced oxidative stress mediated alterations in Cdc25c and p21 may cause modulations in the CDC2/Cyclin B1 complex responsible for G2/M phase checkpoint during meiosis I of spermatogenesis. To create different Se status-deficient, adequate and excess Se, male Balb/c mice were fed yeast based Se deficient diet (group I) and deficient diet supplemented with Se as sodium selenite at 0.2 and 1 ppm Se (group II and III) for a period of 8 weeks. After completion of the diet feeding schedule, a significant decrease in the Se and glutathione peroxidase levels were observed in the Se deficient group (I), whereas Se excess group (III) demonstrated an increase in Se levels. Increased levels of lipid peroxidation (LPO) were seen in both group I and group III when compared to group II, thus indicating oxidative stressed conditions. The mRNA and protein expression of CDC2, Cyclin B1, and Cdc25c were found to be significantly decreased in groups I and III. However, the expression of p21, a kinase inhibitor, was found to be elevated in Se deficient and Se excess fed groups. A statistically significant decrease in the CDC2 kinase activity was also seen in the Se deficient and excess groups. These findings suggest that under the influence of Se-induced oxidative stress, the down regulation of CDC2/Cyclin B1 complex is mediated through changes in Cdc25c and p21 leading to the cell cycle arrest and thus providing new dimensions to the molecular mechanisms underlying male infertility.  相似文献   

4.
Microcystin-LR (MC-LR) produced by cyanobacteria are potent specific hepatotoxins. So far the pathogenesis of environmental MC-LR toxicity to aquatic organisms has not been fully elucidated. In the present study the accumulation of MC-LR was investigated in various organs/tissues of Cyprinus carpio L. (C. carpio) following exposure to MC-LR for 14 d at environmentally relevant concentrations (0.1 to 10 μg L(-1)). Results showed that the presence of MC-LR enhanced toxin accumulation in all investigated organs and the highest accumulation was found in the liver of fish exposed to 5.0 μg L(-1) of MC-LR. An EPR analysis indicated ·OH intensity in liver was significantly induced at 0.1 μg L(-1) of MC-LR and then restored when the MC-LR concentration was greater than 0.1 μg L(-1). After 14-day exposure, MC-LR (1.0-10.0 μg L(-1) of MC-LR) caused a pronounced promotion of glutathione S-transferase (GST) activity and a depletion of reduced glutathione (GSH) content in fish liver, which indicated that GSH was involved in detoxification of MC-LR and the conjugation reaction of MC-LR and GSH occurred. A mild oxidative damage was evidenced by the accumulation of malondialdehyde (MDA) level at 5.0 μg L(-1) of MC-LR exposure, but which was restored when the MC-LR concentration was increased to 10.0 μg L(-1). The responses of antioxidant enzymes and the induction of HSP70 expression might contribute to MC-LR tolerance of C. carpio. However, the protein phosphatase (PP) activities were strikingly inhibited in all treated groups. Thus, the overall toxicity of environmental MC-LR on C. carpio seems to be initiated in the liver via both the ROS pathway and the PP inhibition pathway, and the latter might be more important when ambient MC-LR concentration is greater than 0.1 μg L(-1). More importantly, these results can help to support the evaluation on the potential effects of MC-LR under common environmental concentrations.  相似文献   

5.
Expression of HSP70 is induced by stress factors, including sublethal chilling. However, the role of HSP70 for overcoming the consequences of cold stress is not clear. If it is positive, the level of HSP70 expression might be higher in populations from cold climates. Using the immunoblotting technique we investigated dynamics of HSP70 expression in response to cold stress in two Myrmica species (M. rubra and M. ruginodis) from three localities of different latitudes (50, 60 and 67°N). The results showed that in the more thermophilic species Myrmica rubra, expression of HSP70 after cold stress was higher. Within both species, HSP70 expression did not show a direct relationship with latitude. The southernmost population of M. rubra and northernmost population of M. ruginodis displayed the fastest and the most intense response. However, two other populations of M. rubra were similar in timing and intensity of the response, while in M. ruginodis the intermediate population showed the slowest and weakest response. The data suggest that expression of HSP70 may play essential role for adaptation to cold only in the northernmost population of M. ruginodis  相似文献   

6.
The Src homology phosphotyrosyl phosphatase, SHP2, is a positive effector of EGFR signaling. However, the molecular mechanism and biological functions of SHP2 regulation are still not completely known. To better understand the cellular processes in which SHP2 participates, we carried out mass spectrometry to find SHP2 binding proteins. FLAG-SHP2 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by LC/MS/MS mass spectrometry. Among the identified proteins, we focus in this report on the heat shock protein 70 (HSP70). Physical interactions of SHP2 with HSP70 were confirmed in vivo. Further experiments demonstrate that EGF does not activate binding of SHP2 with HSP70 rather the binding appears to be constitutive. However, the formation of an HSP70/SHP2 complex affected the binding of SHP2 with EGFR and (or) GAB1. These data suggest that binding of HSP70 with SHP2 regulates to some extent the EGF signaling pathway. In addition, immunostaining experiments indicated that SHP2 and HSP70 co-localized in the cell membrane region after EGF treatment. Our findings propose a possible involvement of HSP70 in the regulation of EGF signaling pathway by SHP2.  相似文献   

7.
HSP70 is a member of the family of heat‐shock proteins that are known to be up‐regulated in neurons following injury and/or stress. HSP70 over‐expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over‐expression by transfection with HSP70‐expression plasmids in primary cortical neurons and the SH‐SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2‐ceramide, and β‐Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease‐activating factor 1, as well as apoptosis‐inducing factor, key molecules involved in development of caspase‐dependent and caspase‐independent PCD, respectively. Markers of caspase‐dependent PCD, including active caspase‐3, caspase‐9, and cleaved PARP were attenuated in neurons over‐expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase‐dependent and caspase‐independent PCD pathways.  相似文献   

8.
9.
Cypermethrin (CYP), an insecticide, has deleterious effects on male reproductive function. The objective was to identify whether the effects of beta-CYP on male reproductive organs were associated with oxidative stress. Three doses of beta-CYP (1, 10, and 20 mg/kg) were administered to male mice for 35 d, with or without vitamin E (20 mg/kg). The moderate (10 mg/kg) and high (20 mg/kg) doses of beta-CYP not only decreased body weight and the weight of the testes, epididymides, seminal vesicles, and prostate (P < 0.05) but also reduced serum testosterone concentration and the expression of steroidogenic acute regulatory protein (P < 0.05), in addition to damaging the seminiferous tubules and sperm development. Furthermore, moderate and high doses of beta-CYP administration decreased sperm number, sperm motility, and intact acrosome rate (P < 0.05). Based on ultrastructural analyses, high doses of beta-CYP produced swelling and degeneration of mitochondria and the smooth endoplasmic reticulum of Leydig cells and caused the formation of concentric circles. These toxic effects of beta-CYP may be mediated by increasing oxidative stress, as the moderate and high doses of this compound increased malondialdehyde and nitric oxide in testes (P < 0.05); reduced the activity of catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (P < 0.05); and activated ERK1/2 (P < 0.05). Vitamin E reversed the effects of beta-CYP on testosterone production and testis damage (P < 0.05 vs. the high-dose group). Therefore, we inferred that beta-CYP damaged the structure of testes and decreased sperm output by inducing oxidative stress.  相似文献   

10.
Heat shock proteins (HSPs) are a family of cellular proteins involved in a variety of biological functions including chaperone activity. HSPs are classified based on their molecular weight and each family has several isoforms in eukaryotes. HSP40 is the most diverse family acting as a co-chaperone for the highly conserved HSP70 family. Some of the isoforms are reported to be induced during heat stress. Few studies have also highlighted the diverse role of some isoforms in different stress conditions including viral infections. But till date, no study has comprehensively examined the expression profile of different HSP40 and 70 isoforms in either heat stress or HIV-1 infection, a virus that is responsible for the pandemic of AIDS. In the present study, we have compared the mRNA expression profile of HSP40 and HSP70 isoforms during heat stress and HIV-1 infection in a T-cell line and also validated the HIV-1 stress results in peripheral blood mononuclear cells. In case of HSP70, we observed that three isoforms (HSPA1A, HSPA1B, and HSPA6) are highly upregulated during heat stress, but these isoforms were found to be downregulated during the peak of HIV-1 infection. While in case of HSP40, we found that only DNAJA4, DNAJB1, and DNAJB4 showed significant upregulation during heat stress, whereas in HIV-1 infection, majority of the isoforms were induced significantly. Stress-dependent differential expression observed here indicates that different HSP40 and HSP70 isoforms may have specific roles during HIV-1 infection and thus could be important for future studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01185-y.  相似文献   

11.

Background

When cells become stressed, they form stress granules (SGs) and show an increase of the molecular chaperone HSP70. The translational regulator YB-1 is a component of SGs, but it is unclear whether it contributes to the translational induction of HSP70 mRNA. Here we examined the roles of YB-1 in SG assembly and translational regulation of HSP70 mRNA under arsenite-induced stress.

Method

Using arsenite-treated NG108-15 cells, we examined whether YB-1 was included in SGs with GluR2 mRNA, a target of YB-1, and investigated the interaction of YB-1 with HSP70 mRNA and its effect on translation of the mRNA. We also investigated the distribution of these mRNAs to SGs or polysomes, and evaluated the role of YB-1 in SG assembly.

Results

Arsenite treatment reduced the translation level of GluR2 mRNA; concomitantly, YB-1-bound HSP70 mRNA was increased and its translation was induced. Sucrose gradient analysis revealed that the distribution of GluR2 mRNA was shifted from heavy-sedimenting to much lighter fractions, and also to SG-containing non-polysomal fractions. Conversely, HSP70 mRNA was shifted from the non-polysomal to polysome fractions. YB-1 depletion abrogated the arsenite-responsive activation of HSP70 synthesis, but SGs harboring both mRNAs were still assembled. The number of SGs was increased by YB-1 depletion and decreased by its overexpression.

Conclusion

In arsenite-treated cells, YB-1 mediates the translational activation of HSP70 mRNA and also controls the number of SGs through inhibition of their assembly.

General significance

Under stress conditions, YB-1 exerts simultaneous but opposing actions on the regulation of translation via SGs and polysomes.  相似文献   

12.
The study aimed to evaluate inducible HSP70 (HSP70.1 and HSP70.2) gene expression and oxidative stress status in skin of cattle during different seasons. Ten each of Tharparkar (zebu) and Karan Fries (crossbred) heifers were selected from NDRI herd, Karnal. Animals were maintained under standard managemental practices followed at the farm. Skin biopsies were aseptically collected from each animal during winter, spring, and summer. Real time PCR was performed to examine HSP70 expression. Reactive oxygen species (ROS) and antioxidant enzymes (SOD and CAT) were determined by ELISA. In both the breeds, significantly higher (p < 0.05) levels of HSP70 expression, ROS, caspases, and antioxidant enzymes were observed during summer followed by winter and spring. Breeds showed no significant difference during winter and spring. During summer, HSP70 expression, ROS, and antioxidant enzymes were higher (p < 0.05) in Karan Fries than Tharparkar, whereas caspases levels were higher in Tharparker than Karan Fries. The study concludes that levels of HSP70 expression, ROS, caspases, and antioxidant enzymes in skin of cattle were strongly affected by seasonal change in temperature. Differences exist in skin tissue thermotolerance of Tharparkar and Karan Fries cattle. This might be an efficient and centrally important mechanism for better adaptability of zebu cattle to heat stress.  相似文献   

13.
We have previously shown that heat shock protein 70 (HSP70) markedly inhibits H2O2-induced apoptosis in mouse C2C12 myogenic cells by reducing the release of Smac. However, the molecular mechanism by which HSP70 interferes with Smac release during oxidative stress-induced apoptosis is not understood. In the current study, we showed that HSP70 increased the stability of Bcl-2 during oxidative stress. An antisense phosphorothioate oligonucleotide against Bcl-2 caused selective inhibition of Bcl-2 protein expression induced by HSP70 and significantly attenuated HSP70-mediated cell protection against H2O2-induced release of Smac and apoptosis. Taken together, our results indicate that there are important relationships among HSP70, Bcl-2, release of Smac, and induction of apoptosis by oxidative stress.  相似文献   

14.
Live cell‐based sensors potentially provide functional information about the cytotoxic effect of reagents on various signaling cascades. Cells transfected with a reporter vector derived from a cytotoxic response promoter can be used as intelligent cytotoxicity sensors (i.e., sensor cells). We have combined sensor cells and a microfluidic cell culture system that can achieve several laminar flows, resulting in a reliable high‐throughput cytotoxicity detection system. These sensor cells can also be applied to single cell arrays. However, it is difficult to detect a cellular response in a single cell array, due to the heterogeneous response of sensor cells. The objective of this study was cell homogenization with cell cycle synchronization to enhance the response of cell‐based biosensors. Our previously established stable sensor cells were brought into cell cycle synchronization under serum‐starved conditions and we then investigated the cadmium chloride‐induced cytotoxic response at the single cell level. The GFP positive rate of synchronized cells was approximately twice as high as that of the control cells, suggesting that cell homogenization is an important step when using cell‐based biosensors with microdevices, such as a single cell array. Biotechnol. Bioeng. 2010;107: 561–565. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Although the precise mechanism remains unclear, mounting evidence suggests that oxidative stress plays an important role in the pathogenesis of PD. DJ-1 gene is associated with oxidative stress and mutations in DJ-1 are involved in an autosomal recessive, early onset familial form of PD. The ERK1/2 signaling pathway contributes to neuroprotection during oxidative stress. However, the correlation between DJ-1 and the ERK1/2 signaling pathway remains unknown. To test for an association of DJ-1 with the ERK1/2 signaling pathway, we transfected wild-type and L166P mutated DJ-1 into COS-7 and MN9D cells. The results showed that over-expression of WT-DJ-1 dramatically enhanced the phosphorylation of ERK1/2 and its upstream kinase MEK1/2. Meanwhile, WT-DJ-1, but not L166P-DJ-1 inhibited the expression of protein phosphatase 2A (PP2A), an inhibitor of the ERK1/2 signaling pathway. Moreover, over-expression of WT-DJ-1 increased cell viability and decreased cell sensitivity to H2O2-induced neurotoxicity. Inhibition of the ERK1/2 signaling pathway with a MEK1/2 inhibitor reversed these changes. We conclude that DJ-1 does affect the ERK1/2 signaling pathway and change the susceptibility of cells to oxidative stress.  相似文献   

16.
Vitiligo is a common skin depigmenting disorder characterized by the loss of functional melanocytes. Its pathogenesis is complicated and oxidative stress plays a critical role in the development of vitiligo. Thus, antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of depigmentation. Ginkgo biloba extract EGb761 has been confirmed to have protective effects on neurons against oxidative stress. Notably, several clinical trials have shown that patients with stable vitiligo achieved repigmentation after taking EGb761. However, the exact mechanism underlying the protective effects of EGb761 on melanocytes against oxidative stress has not been fully elucidated. In the present study, we found that EGb761 effectively protected melanocytes against oxidative stress‐induced apoptosis and alleviated the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation by enhancing the activity of antioxidative enzymes. Furthermore, the antioxidative effect of EGb761 was achieved by activating Nrf2 and its downstream antioxidative genes. In addition, interfering Nrf2 with siRNA abolished the protective effects of EGb761 on melanocytes against oxidative damage. In conclusion, our study proves that EGb761 could protect melanocytes from H2O2‐induced oxidative stress by activating Nrf2. Therefore, EGb761 is supposed to be a potential therapeutic agent for vitiligo.  相似文献   

17.
There are few factors more important to the mechanisms of evolution than stress. The stress response has formed as a result of natural selection, improving the capacity of organisms to withstand situations that require action. The ubiquity of the cellular stress response suggests that effective mechanisms to counteract stress emerged early in the history of life, and their commonality proves how vital such mechanisms are to operative evolution. The cellular stress response (CSR) has been identified as a characteristic of cells in all three domains of life and consists of a core 44 proteins that are structurally highly conserved and that have been termed the ‘minimal stress proteome’ (MSP). Within the MSP, the most intensely researched proteins are a family of heat‐shock proteins known as HSP70. Superficially, correlations between the induction of stress and HSP70 differential expression support the use of HSP70 expression as a nonspecific biomarker of stress. However, we argue that too often authors have failed to question exactly what HSP70 differential expression signifies. Herein, we argue that HSP70 up‐regulation in response to stressors has been shown to be far more complex than the commonly accepted quasi‐linear relationship. In addition, in many instances, the uncertain identity and function of heat‐shock proteins and heat‐shock cognates has led to difficulties in interpretation of reports of inducible heat‐shock proteins and constitutive heat‐shock cognates. We caution against the broad application of HSP70 as a biomarker of stress in isolation and conclude that the application of HSP70 as a meaningful index of stress requires a higher degree of validation than the majority of research currently undertakes.  相似文献   

18.
Exosomes (EXO) derived from tumour cells have been used to stimulate antitumour immune responses, but only resulting in prophylatic immunity. Tumour‐derived heat shock protein 70 (HSP70) molecules are molecular chaperones with a broad repertoire of tumour antigen peptides capable of stimulating dendritic cell (DC) maturation and T‐cell immune responses. To enhance EXO‐based antitumour immunity, we generated an engineered myeloma cell line J558HSP expressing endogenous P1A tumour antigen and transgenic form of membrane‐bound HSP70 and heat‐shocked J558HS expressing cytoplasmic HSP70, and purified EXOHSP and EXOHS from J558HSP and J558HS tumour cell culture supernatants by ultracentrifugation. We found that EXOHSP were able to more efficiently stimulate maturation of DCs with up‐regulation of Iab, CD40, CD80 and inflammatory cytokines than EXOHS after overnight incubation of immature bone‐marrow‐derived DCs (5 × 106 cells) with EXO (100 μg), respectively. We also i.v. immunized BALB/c mice with EXO (30 μg/mouse) and assessed P1A‐specific T‐cell responses after immunization. We demonstrate that EXOHSP are able to stimulate type 1 CD4+ helper T (Th1) cell responses, and more efficient P1A‐specific CD8+ cytotoxic T lymphocyte (CTL) responses and antitumour immunity than EXOHS. In addition, we further elucidate that EXOHSP‐stimulated antitumour immunity is mediated by both P1A‐specific CD8+ CTL and non‐P1A‐specific natural killer (NK) responses. Therefore, membrane‐bound HSP70‐expressing tumour cell‐released EXO may represent a more effective EXO‐based vaccine in induction of antitumour immunity.  相似文献   

19.
Here, we aimed to further characterize the mechanisms involved in protoxin (p) Cry1Ac‐induced macrophage activation. We demonstrated that pCry1Ac induces MAPK ERK1/2, p38, and JNK phosphorylation in RAW264.7 macrophages. Because MAPK activation is mainly triggered via ligand–receptor interactions, we focused on the identification of potential pCry1Ac‐receptor proteins. Flow cytometry and confocal analysis showed specific saturable pCry1Ac‐binding to the macrophage surface and evidenced its internalization via the clathrin‐pathway. We performed immunoprecipitation assays and identified by MALDI‐TOF‐TOF several possible pCry1Ac‐binding proteins, such as heat shock proteins (HSPs), vimentin, α‐enolase, and actin; whose interaction and presence was confirmed, respectively, by ligand blot and Western blot assays. We also detected cell‐surface (cs) pCry1Ac‐HSP70 colocalization, so HSP70 was chosen for further characterization. Co‐immunoprecipitation with HSP70 antibodies followed by Western blot confirmed the pCry1Ac‐HSP70 interaction. Furthermore, pretreatment of RAW264.7 cells with HSP70 antibodies reduced pCry1Ac‐induced ERK1 phosphorylation and MCP‐1 production; thus suggest the functional participation of csHSP70 in pCry1Ac‐induced macrophage activation. csHSP70 also was evaluated in peritoneal‐cavity (PerC) macrophages of untreated BALB/c mice, interestingly it was found that the predominant population namely large‐peritoneal‐macrophages (LPM) displayed csHSP70 + hi. Furthermore, the dynamics of PerC macrophage subsets, LPM, and small‐peritoneal macrophages (SPM) were evaluated in response to in vivo pCry1Ac stimuli in presence or not of phenylethynesulfonamide (PES) a functional HSP70 inhibitor. It was found that pCry1Ac increased the proportion of SPM CD11b + F4/80 + lowMHCII + csHSP70 + low and markedly reduced the amount of LPM CD11b + F4/80 + hiMHCII‐csHSP70 + hi; while PES, partially suppressed this pCry1Ac‐induced effect, further suggesting the participation of HSP70 in macrophage activation process. J. Cell. Biochem. 119: 580–598, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号