首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gap junction protein connexin45-deficient (Cx45-KO) mice die shortly after the hearts begin to beat. In addition to the heart defect, they also show defective vascular development which may be closely related with the cardiac phenotype. Therefore, we created mice whose floxed-Cx45 locus could be removed conditionally. We utilized cardiac α-actin-Cre transgenic mice to investigate the specific cardiac muscular function of Cx45 in vivo. The resultant conditional mutants were lethal, showing conduction block similar to that of the Cx45-KO mice. Unlike Cx45-KO, development of the endocardial cushion was not disrupted in the conditional mutants. X-gal staining was detected in the embryonic cardiac myocytes as a hallmark of Cre-loxP mediated floxed-Cx45 deletion. These results reconfirm the requirement of Cx45 for developing cardiac myocytes. These also indicate that establishing the first contractions is a crucial task for the early hearts.  相似文献   

2.
3.
    
Site-specific recombinases revolutionized “in vivo” genetic engineering because they can catalyze precise excisions, integrations, inversions, or translocations of DNA between their distinct recognition target sites. We have constructed a synthetic gene encoding Cre recombinase with the GC content 67.7% optimized for expression in high-GC bacteria and demonstrated this gene to be functional in Streptomyces lividans. Using the synthetic cre(a) gene, we have removed an apramycin resistance gene flanked by loxP sites from the chromosome of S. lividans with 100% efficiency. Sequencing of the chromosomal DNA part showed that excision of the apramycin cassette by Cre recombinase was specific.  相似文献   

4.
    
Cre-mediated excision of targeted loxP sites is widely used to delete or to activate gene expression in temporal or tissue-specific fashions. We examine three previously described cre alleles and find that Cre activity alone causes dramatic developmental defects, such as loss of hematopoietic activity and dramatically upregulated apoptosis in many embryonic tissues in two of these lines. These results demonstrate that cre expression generates spurious phenotypes that can confound genetics analyses. We also find that most recently published studies fail to include cre-positive controls, and thus may have attributed roles to a targeted gene, which were in reality partly or wholly due to Cre toxicity. This information will be critical in both evaluating previously published work using cre alleles and in designing future experiments.  相似文献   

5.
Cre重组酶结构与功能的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
Cre/loxP定位重组系统来源于噬菌体P1,由Cre重组酶和loxP位点两部分组成。在Cre重组酶的介导下,设定的DNA片段可以被切除,可以发生倒位,亦可造成定点的整合。由于其作用方式高效简单,Cre/loxP定位重组系统已在特定基因的删除、基因功能的鉴定、外源基因的整合、基因捕获及染色体工程等方面得到了有效的利用,在转基因的酵母、植物、昆虫、哺乳动物的体内外DNA重组方面成为一个有力的工具。这里就Cre重组酶的结构、功能及该定位重组系统的应用等方面的研究进行了综述。  相似文献   

6.
    
Serotonin regulates cardiovascular functions during embryogenesis and adulthood. However, the source of serotonin in the cardiovascular system and the role of circulating serotonin and serotonin transporter (SERT) in the regulation of cardiovascular functions are still unclear. We used a cell fate approach to map the regions of the mouse heart expressing SERT, utilizing a Cre/loxP system driven by SERT gene expression. Cell labelling was first detected at E10.5 and was mapped until E18.5. We found labelling in the outflow tract, part of right ventricle and to a very limited extent in the left ventricle. Interestingly, the distribution pattern of SERT-fated cells was remarkably similar to that obtained with markers of the second heart field lineage. In addition, we observed staining of atrioventricular valves, consistent with valvular abnormalities observed in SERT-/-animals. Overall, our data reveal specific and regionally restricted distribution of SERT-expressing cells in the developing heart of mouse.  相似文献   

7.
    
Smad2 is an intracellular mediator of the transforming growth factor beta signaling (TGFbeta) pathway. It has been previously shown that, in the mouse, ablation of functional Smad2 results in embryonic lethality due to gastrulation defects. To circumvent the early lethality and study the spatially and temporally specific functions of Smad2, we utilized the Cre-loxP system to generate a Smad2 conditional allele. Here we show that a conditional allele, Smad2(flox), was generated. In this allele, exons 9 and 10 are flanked by loxP sites and the gene is functionally wildtype. Cre-mediated recombination results in a deletion allele which phenocopies our previously reported Smad2(DeltaC) null mutation. To generate this conditional allele, we first made a targeted mutation which introduced a floxed neo cassette into intron 10. This allele (Smad2(3loxP)) functions hypomorphically when placed opposite a null allele, and unlike the other published Smad2 hypomorphic allele, can be maintained in the homozygous state.  相似文献   

8.
    
Cre-mediated apoptosis has been observed in many contexts in mice expressing Cre-recombinase and can confound the analysis of genetically engineered conditional mutant or transgenic alleles. Several mechanisms have been proposed to explain this phenomenon. We find that the degree of apoptosis induced correlates roughly with the copy number of loxP sites present in the genome and that some level of increased apoptosis accompanies the presence of even only a few loxP sites, as occurs in conditional floxed alleles. Cre-induced apoptosis in this context is completely p53-dependent, suggesting that the apoptosis is stimulated by p53 activation in response to DNA damage incurred during the process of Cre-mediated recombination.  相似文献   

9.
    
To introduce restricted DNA recombination events into catecholaminergic neurons using the Cre/loxP technology, we generated transgenic mice carrying the Cre recombinase gene driven by a 9 kb rat tyrosine hydroxylase (TH) promoter. Immunohistochemistry performed on transgenic mouse brain sections revealed a high number of cells expressing Cre in areas where TH is normally expressed, including the olfactory bulb, hypothalamic and midbrain dopaminergic neurons, and the locus coeruleus. Double immunohistochemistry and immunofluorescence indicated that colocalization of TH and Cre is greater than 80%. Cre expression was also found in TH-positive amacrine neurons of the retina, chromaffin cells of the adrenal medulla, and sympathetic ganglia. We crossbred TH-Cre mice with the floxed reporter strain Z/AP and observed efficient Cre-mediated recombination in all areas expressing TH, indicating that transgenic Cre is functional. Therefore, we have generated a valuable transgenic mouse strain to induce specific mutations of \"floxed\" genes in catecholaminergic neurons.  相似文献   

10.
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
目的:构建FKBP38(FK506 Binding Protein 38)基因肝脏特异敲除小鼠。方法:利用胚胎注射法构建在FKBP38上携带lox P位点的转基因小鼠。在FKBP38基因位置携带lox P位点的小鼠的基础上,以肝脏实质细胞特异性表达的Alb-Cre介导FKBP38条件性敲除,以获得FKBP38基因肝脏特异敲除小鼠模型Alb-Cre:FKBP38~(fl/fl)。同时对FKBP38特异性敲除鼠进行鉴定。结果:(1)FKBP38肝脏特异敲除小鼠FKBP38~(-/-)肝脏中FKBP38基因的m RNA水平相对于同年龄同窝野生型小鼠具有统计学差异(P0.001)。(2)FKBP38肝脏特异敲除小鼠FKBP38~(-/-)肝脏中FKBP38基因的蛋白表达水平相对于同年龄同窝野生型小鼠具有统计学差异(P0.001)。(3)FKBP38肝脏特异敲除小鼠FKBP38~(-/-)肝脏中,转录和翻译相关蛋白水平未见显著差异,p70 S6K的磷酸化水平轻微上调,4EBP-1的磷酸化水平有轻微下调。(4)FKBP38肝脏特异敲除小鼠FKBP38~(-/-)肝脏中,凋亡相关蛋白Bcl-2未见差异化表达。结论:FKBP38肝脏特异敲除小鼠FKBP38~(-/-)肝脏中,FKBP38基因的m RNA和蛋白基本不表达,提示成功构建FKBP38基因肝脏特异敲除小鼠。  相似文献   

12.
    
BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines.  相似文献   

13.
14.
    
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
    
A mammalian body is composed of more than 200 different types of cells. The purification of a certain cell type from tissues/organs enables a wide variety of studies. One popular cell purification method is immunological isolation, using antibodies against specific cell surface antigens. However, this is not a general‐purpose method, since suitable antigens have not been found in certain cell types, including embryonic gonadal somatic cells and Sertoli cells. To address this issue, we established a knock‐in mouse line, named R26 KI, designed to express the human cell surface antigen hCD271 through Cre/loxP‐mediated recombination. First, we used the R26 Kl mouse line to purify embryonic gonadal somatic cells. Gonadal somatic cells were purified from the R26 KI; Nr5a1‐Cre‐transgenic (tg) embryos almost equally as efficiently as from Nr5a1‐hCD271‐tg embryos. Second, we used the R26 KI mouse line to purify Sertoli cells successfully from R26 KI; Amh‐Cre‐tg testes. In summary, we propose that the R26 KI mouse line is a powerful tool for the purification of various cell types. genesis 53:387–393, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
位点特异重组系统由重组酶和相应的重组酶识别位点组成,通过两者间的相互作用,实现外源基因精确整合与切除等一系列遗传操作.主要可分为Cre/lox系统、FLP/frt系统、R/RS系统和Gin/gix系统.目前,研究最充分应用最广泛的位点特异重组系统为Cre/lox系统.此系统为位点特异重组系统家族中的一员,由38.5kDCre重组酶和34bplox位点组成,最早被应用于动物转基因研究,包括基因敲除、基因激活、基因易位等.近年来,随着研究的深入,Cre/lox系统被逐步应用到植物研究中,并在诸多领域取得重大进展.本文总结归纳了Cre/lox系统在定点整合、定点切除以及叶绿体转化等方面的最新研究成果,旨在为利用Cre/lox系统构建环境安全和高效表达的植物遗传转化体系提供参考.  相似文献   

17.
    
The Cre/loxP system has been used in transgenic models primarily to excise DNA flanked by loxP sites for gene deletion. However, the insertion reaction is more difficult to control since the excision event is kinetically favored. Mutant loxP sites favoring integration were identified using a novel, bacterial screening system. Utilizing lambda integrase, mutant loxP sites were placed at the E. coli attB site and the excision-insertion ratios of incoming DNA plasmids carrying a second, complementary mutant loxP site were determined. Comparison of 50 mutant loxP sites combinations to the native loxP site revealed that mutations to the inner 6 bp of the Cre binding domain severely inhibited recombination, while those in the outer 8 bps were more tolerated. The most efficient loxP combinations resulted in 1421-fold and 1529-fold increases in relative integration rates over wild-type loxP sites. These loxP mutants could be exploited for site-directed \"tag and insert\" recombination experiments.  相似文献   

18.
    
The jumonji (jmj) gene plays important roles in multiple organ development in mouse, including cardiovascular development. Since JMJ is expressed widely during mouse development, it is essential that conditional knockout approaches be employed to ablate JMJ in a tissue-specific manner to identify the cell lineage specific roles of JMJ. In this report, we describe the establishment of a jmj conditional null allele in mice by generating a loxP-flanked (floxed) jmj allele, which allows the in vivo ablation of jmj via Cre recombinase-mediated deletion. Gene targeting was used to introduce loxP sites flanking exon 3 of the jmj allele to mouse embryonic stem cells. Our results indicate that the jmj floxed allele converts to a null allele in a heart-specific manner when embryos homozygous for the floxed jmj allele and carrying the alpha-myosin heavy chain promoter-Cre transgene were analyzed by Southern and Northern blot analyses. Therefore, this mouse line harboring the conditional jmj null allele will provide a valuable tool for deciphering the tissue and cell lineage specific roles of JMJ.  相似文献   

19.
Smads家族是最新发现的TGF-β信号转导途径中一个重要的新基因家族,SMAD2属于受体激活的SMADs。Smad2在某些肿瘤中发生突变,是一种可能的肿瘤抑制基因。Smad2基因完全剔除小鼠在胚胎期E6.5天死亡,为了研究Smad2在成体各组织器官及肿瘤发生中的可能作用,构建了Smad2条件基因剔除载体,将LoxP置于Smad2基因组序列C末端功能域两侧,并在组成型表达Cre重组酶的大肠杆菌中检测了LoxP位点的功能,该载体的构建为进行Smad2组织特异性基因剔除研究了奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号