首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In embryonic cell-line derivative KCo of Drosophila melanogaster, the nucleolus, like most nucleoli, contains a small proportion of ribosomal DNA (1-2% of the total nucleolar DNA). The ribosomal DNA is virtually the only active gene set in the nucleolus and is found among long stretches of inactive supercoiled heterochromatic segments. We have demonstrated by use of a Feulgen-like ammine-osmium staining procedure that, depending on the state of growth, more or less fibres of decondensed DNA emanating from the intra-nucleolar chromatin (which is in continuity with the nucleolus-associated chromatin) ramify and unravel within the central nucleolar core to be transcribed. The nucleolus expands or contracts with the variation of activity and could belong to a supramolecular matricial structure such as is shown after extraction of the nuclei. After a long period of exposure to high doses of actinomycin D, the central nucleolar core became an homogeneous fibrous structure that could be interpreted as an aggregate of protein skeletal elements. The mechanism of repression and derepression of the nucleolar chromatin could thus be explained by a mechanism involving in part a sub-nucleolar structure. We propose a schematic organization of the nucleolar chromatin in KCo cells of Drosophila and discuss it in relation with other nucleolar organizations.  相似文献   

7.
In metaphase preparations from leucocytes of the toad, Bufo marinus, conspicuous secondary constrictions are present in the number 7 pair of chromosomes. These constrictions were considered to be the nucleolar organizers since they were associated with nucleoli during prophase. In 35 out of 60 individuals taken from natural populations, the homologous nucleolar organizers produced two equal-sized nucleoli and secondary constrictions (Group I animals). Pour animals (Group II) had only one very large secondary constriction in the majority of their metaphase preparations and an abnormally high frequency of cells containing one nucleolus. The remaining 21 animals (Group III) had unequal-sized constrictions in most of their metaphases but were more variable than the individuals of Groups I or II since they also had metaphases with two equal constrictions or only one constriction.The DNA from individuals of each group was hybridized with radioactive ribosomal RNA in order to correlate the size of nucleoli and constrictions with the amount of DNA (rDNA) homologous to ribosomal RNA. The two animals of Group II which were studied contained 0.056% of their genome homologous to ribosomal RNA a value considerably higher than those found for any of the animals of Groups I or III. These high values for rDNA coupled with the morphological appearance of the nucleolar homologues suggested a duplication of the nucleolar organizer in the homologue with the long constriction. The amount of rDNA in animals of Group I and III varied between 0.025 and 0.048% of the genome. Although the animals with unequal-sized constrictions (Group III) had generally lower contents of rDNA than those with equal-sized constrictions (Group I), the values overlapped between the two groups. Further evidence which correlates the size of nucleoli with the number of ribosomal RNA genes comes from studies with a small nucleolar mutant of the Mexican axolotl (Ambystoma mexicanum). Animals homozygous for this deletion were found to contain only 55% of the complement of rDNA present in the wild type. It is concluded that partial deletions and duplications of the nucleolar organizer as well as highly variable contents of rDNA are common in the genome of these amphibians.Presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Biology Department, University of Rochester.  相似文献   

8.
9.
10.
11.
A procedure was developed for isolation of variously sized nucleoli in order to study the mechanism of nucleolar formation from multiple nucleolar organizers and to compare the compositions of different-sized nucleoli from Ehrlich ascites tumor cells. Relatively small nucleoli and large nucleoli from Ehrlich ascites tumor cells were separated by centrifugation at 400 g for 5 min in a layer of 0.34 M sucrose over 0.88 M sucrose. Small nucleoli remained in the 0.34 M sucrose layer while the large nucleoli accumulated in the 0.88 M sucrose.Three fractions, provisionally named small, intermediate and large nucleoli, containing 0.33, 0.41 and 0.84 pg DNA/nucleolus, respectively, were separated. Unfractionated nucleoli contained 0.59 pg DNA/nucleolus. The RNA content also increased with the size of the nucleolus and no significant difference was observed in the RNA/DNA ratios in the three fractions. Large nucleoli incorporated more [3H]uridine and [32P]orthophosphate into RNA than did small nucleoli, but the base compositions of the RNAs extracted from the different-sized nucleoli were similar. No significant fragmentation occurred on sonication of large nucleoli for 3 min, so the observed difference in the DNA contents was not due to mechanical damage of the nucleoli.The DNAs of these different-sized nucleoli were analysed on CsCl gradients. The nucleoli contained similar percentages of satellite DNA (20–22%) which were also similar to those of total, unfractionated nucleoli. Approx. 10% of the extranucleolar DNA is satellite DNA—thus the nucleolar fractions were probably not appreciably contaminated with extranucleolar DNA. The DNA of small nucleoli contained a slightly lower percentage (0.058%) of ribosomal cistrons than large nucleoli (0.081%). This means that the higher content of DNA in the large nucleoli is not merely due to longer sized chromatin with extra regions of the vicinity of nucleolar organizers. Thus these results suggest that the total content of ribosomal cistrons/nucleolus is roughly proportional to the DNA content of the nucleoli, at least in Ehrlich ascites tumor cells. Namely, the number of ribosomal cistrons per nucleolus for small, intermediate and large nucleoli is 40, 60 and 130, respectively.  相似文献   

12.
13.
A central feature of oogenesis in the copepod crustacean, Acanthocyclops vernalis, is the development of a very large nucleolus in the oocytes. This nucleolus appears to be the only source of rRNA for the oocyte, as no helper cells are present. Previous work has suggested that ribosomal DNA sequences other than those found at the morphological nucleolar organizers are participating in the elaboration of this nucleolus. It has been hypothesized that chromatin diminution, which occurs during early embryonic development, may involve the loss of these rDNA sequences, which are needed only for the production of ribosomes during oogenesis. The present study examines the development of the large oocyte nucleolus at the electron microscopic level. Nucleologenesis in A. vernalis was found to proceed through 5 stages. During the first 3 stages nucleolar morphology resembled that described in other organisms. In the last 2, however, nucleolar morphology changed radically and the nucleolus was seen to increase greatly in size while breaking up into multiple subunits. The subunits initially resemble active nucleoli, although in the last stage, synthesis appears to stop, as the nucleolus was found to consist only of dense areas containing ribosome-like particles. These observations are consistent with the hypothesis that diminuted DNA contains ribosomal RNA genes.  相似文献   

14.
15.
The nucleolar lesions provoked by the action of ribonuclease (RNase) on living chick embryo fibroblasts were studied by means of microcinematographic analysis and at the ultrastructural level using oxidized diaminobenzidine as a differentially contrasting stain for nucleic acids. This study has shown that the induction of nucleolar dispersion by RNase was only the beginning of a series of discrete steps. The following sequences are described: dispersion of the nucleolus into fragments, their reassembly, and the emission of spherules which appear of chromatin origin. At that step nucleoli are typically segregated. The alteration of the nucleolar associated chromatin seemed to be primordial in these processes. Moreover, the large mass of heterochromatin intimately associated with the nucleolus and which has been considered to be a part of the nucleolar organizer region apparently plays a chief part in the reassembly of the nucleolar fragments into a segregated nucleolus. Ribonuclease is compared to other drugs known to act on nucleolar DNA.  相似文献   

16.
The nucleolar lesions provoked by the action of ribonuclease (RNase) on living chick embryo fibroblasts were studied by means of microcinematographic analysis and at the ultrastructural level using oxidized diaminobenzidine as a differentially contrasting stain for nucleic acids. This study has shown that the induction of nucleolar dispersion by RNase was only the beginning of a series of discrete steps. The following sequences are described: dispersion of the nucleolus into fragments, their reassembly, and the emission of spherules which appear of chromatin origin. At that step nucleoli are typically segregated. The alteration of the nucleolar associated chromatin seemed to be primordial in these processes. Moreover, the large mass of heterochromatin intimately associated with the nucleolus and which has been considered to be a part of the nucleolar organizer region apparently plays a chief part in the reassembly of the nucleolar fragments into a segregated nucleolus. Ribonuclease is compared to other drugs known to act on nucleolar DNA.  相似文献   

17.
Discrete sites of adenosine triphosphatase (ATPase) activity were demonstrated within the nucleoli of unfixed cultured human fibroblasts (IMR90, VA13, and AG2804 cells) by an adaptation, for electron microscopic cyto-chemistry, of Wachstein and Meisel's lead nitrate method. The majority of nucleoli contained more than one ATPase-positive region, but the total ATPase-positive material appeared to occupy only a minor portion of the nucleolar volume. These regions were roughly spherical with an irregular contour, and at times appeared to be components of perinucleolar chromatin or to be located adjacent to nucleolar interstices. The distribution of these regions within the nucleolus and their segregation by actinomycin D suggested that the ATPase-positive regions correspond to the fibrillar centers, which represent nucleolar organizer regions. The cytochemically demonstrable nucleolar ATPase was strictly dependent on the presence of divalent cations. Optimal reactions was seen at 5 mM Mg2+, but near optimal activity was obtained with lower concentrations of Mg2+ in the presence of Ca2+. Calcium alone and Mn2+ alone produced suboptimal reaction. Studies with different nucleoside phosphates as reaction substrates showed that the enzyme is specific for adenosine derivatives, ATP and dATP being equally good substrates. Guanosine triphosphate, cytidine triphosphate, uridine triphosphate, and d-thymidine triphosphate were ineffective as substrates, as were nucleoside mono- and diphosphates and other phosphate esters tested. It is suggested that the cytochemical ATPase reaction visualized the regions of the nucleolus in which ribosomal DNA of intranucleolar chromatin is undergoing conformational alterations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号