首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated extracellular D-glucose increases transforming growth factor beta1 (TGF-beta1) release from human umbilical vein endothelium (HUVEC). TGF-beta1, via TGF-beta receptors I (TbetaRI) and TbetaRII, activates Smad2 and mitogen-activated protein kinases p44 and p42 (p42/44(mapk)). We studied whether D-glucose-stimulation of L-arginine transport and nitric oxide synthesis involves TGF-beta1 in primary cultures of HUVEC. TGF-beta1 release was higher ( approximately 1.6-fold) in 25 mM (high) compared with 5 mM (normal) D-glucose. TGF-beta1 increases L-arginine transport (half maximal effect approximately 1.6 ng/ml) in normal D-glucose, but did not alter high D-glucose-increased L-arginine transport. TGF-beta1 and high D-glucose increased hCAT-1 mRNA expression ( approximately 8-fold) and maximal transport velocity (V(max)), L-[(3)H]citrulline formation from L-[(3)H]arginine (index of NO synthesis) and endothelial NO synthase (eNOS) protein abundance, but did not alter eNOS phosphorylation. TGF-beta1 and high D-glucose increased p42/44(mapk) and Smad2 phosphorylation, an effect blocked by PD-98059 (MEK1/2 inhibitor). However, TGF-beta1 and high D-glucose were ineffective in cells expressing a truncated, negative dominant TbetaRII. High D-glucose increases L-arginine transport and eNOS expression following TbetaRII activation by TGF-beta1 involving p42/44(mapk) and Smad2 in HUVEC. Thus, TGF-beta1 could play a crucial role under conditions of hyperglycemia, such as gestational diabetes mellitus, which is associated with fetal endothelial dysfunction.  相似文献   

2.
D-Glucose deprivation of primary rat brain glial cell cultures, by incubation with 25 mM D-fructose for 24 h, resulted in a 4-5-fold induction of D-glucose transport activity. In contrast, 24-h D-glucose starvation of primary rat brain neuronal cultures had only a marginal effect (1.5-2-fold) on D-glucose transport activity. Northern blot analysis of total cellular RNA demonstrated that under these conditions the rat brain glial cells specifically increased the steady-state level of the D-glucose transporter mRNA 4-6-fold, whereas Northern blot analysis of the neuronal cell cultures revealed no significant alteration in the amount of D-glucose transporter mRNA by D-glucose deprivation. These findings demonstrated that the D-glucose-dependent regulation of the D-glucose transporter system occurred in a brain cell type-specific manner. The ED50 for the D-glucose starvation increase in the D-glucose transporter mRNA, in the glial cell cultures, occurred at approximately 3.5 mM D-glucose with maximal effect at 0.5 mM D-glucose. Readdition of D-glucose to the starved cell cultures reversed the increase in the D-glucose transporter mRNA levels and D-glucose transport activity to control values within 24 h. The increase in the D-glucose transporter mRNA was relatively rapid with half-maximal stimulation at approximately 2 h and maximal induction by 6-12 h of D-glucose deprivation. A similar time course was also observed for the starvation-induced increase in D-glucose transport activity and D-glucose transporter protein, as determined by Western blot analysis. These results document that, in rat brain glial cells, D-glucose transport activity, protein, and mRNA are regulated by the extracellular D-glucose concentration. Further, this suggests a potential role for hyperglycemia in the down-regulation of the D-glucose transport system in vivo.  相似文献   

3.
This study aimed to validate the methylation of key genes in hepatocellular carcinoma (HCC) screened by bioinformatics analysis and explore whether they affected HCC cell proliferation, migration, and invasion. Using The Cancer Genome Atlas (TCGA) database, HCC-related differentially methylated positions (DMPs) were screened, genes corresponding to DMPs were selected, and prognosis-related genes were identified. A representative DMP was used to divide the DMPs into hyper- and hypomethylated groups. Expression of key genes in cell lines was detected using quantitative real-time polymerase chain reaction and western blot analysis. After treatment of HepG2 cells with 5-Aza-2′-deoxycytidine (5-Aza-DC), gene expression was observed. Bisulfite sequencing PCR assay was used to detect methylation frequency. Overexpressed GRASP lentiviral vectors were constructed to analyze their influence on cell proliferation, migration, and invasion using cell counting kit-8 and transwell assays. Forty-three HCC prognosis-related genes were screened using the TCGA database. cg00249511 (SCT) was used to divide the DMPs into hyper- and hypomethylated groups, distinguishing between high- and low-risk samples. The prognosis survival model constructed using 12 genes revealed the prognosis type. GRASP messenger RNA was downregulated in HepG2 and upregulated after 5-Aza-DC treatment. In HCC tissues, methylation frequency of GRASP was upregulated. GRASP overexpression inhibited HepG2 cell proliferation, invasion, and G-CSFR expression. Thus, GRASP might be a prognosis-related gene controlled by methylation.  相似文献   

4.
It has been shown that p53 induces cell apoptosis and the Bcl-2 family plays key roles in this process. However, the molecular mechanism of p53 apoptotic pathway is still unclear. Here, we show that overexpression of exogenous wild-type p53 induced apoptosis in lung cancer cells and high metastasis potential cells had a faster rate of apoptosis than low metastasis potential cells. The expression of pro-apoptotic gene BNIP3 was increased significantly both in Anip973 and 95D cell lines which have high metastasis ability, but not AGZY83-a or little increased in 95C cell lines which possess low metastasis ability. Overexpression of BNIP3 increases apoptotic rate induced by p53 in AGZY83-a cells. Blocking the expression of BNIP3 by siRNA in Anip973 cells decreased apoptotic rate mediated by p53. Taken together, these data suggest that high level expression of BNIP3 mediated rapid apoptosis that was triggered by p53 in lung cancer cells.  相似文献   

5.
Primary human cells enter senescence after a characteristic number of population doublings (PDs). In the current study, human skin fibroblasts were propagated in culture under 5.5mM glucose (normoglycemia); addition of 16.5mM D-glucose to a concentration of 22 mM (hyperglycemia); and addition of 16.5mM L-glucose (osmotic control). Hyperglycemia induced premature replicative senescence after 44.42+/-1.5 PDs compared to 57.9+/-3.83 PDs under normoglycemia (p<0.0001). L-Glucose had no effect, suggesting that the effect of hyperglycemia was not attributed to hyperosmolarity. Activated caspase-3 measurement showed a significantly higher percentage of apoptotic cells in high glucose medium. Telomerase overexpression circumvented the effects of hyperglycemia on replicative capacity and apoptosis. The "point of no return," beyond which hyperglycemia resulted in irreversible progression to premature replicative senescence, occurred after exposure to hyperglycemia for as few as 20 PDs. These results may provide a biochemical basis for the relationship between hyperglycemia and those complications of diabetes, which are reminiscent of accelerated senescence.  相似文献   

6.
Glyoxalase I is the first enzyme in a two-enzyme glyoxalase system that metabolizes physiological methylglyoxal (MGO). MGO reacts with proteins to form irreversible adducts that may lead to crosslinking and aggregation of lens proteins in diabetes. This study examined the effect of hyperglycemia on glyoxalase I activity and its mRNA content in mouse lens epithelial cells (mLE cells) and in diabetic mouse lenses and investigated the relationship between GSH and MGO in organ cultured lenses. mLE cells cultured with 25 mM D-glucose (high glucose) showed an upregulation of glyoxalase I activity and a higher content of glyoxalase I mRNA when compared with either cells cultured with 5 mM glucose (control) or with 20 mM L-glucose + 5 mM D-glucose. MGO concentration was significantly elevated in cells cultured with high D-glucose, but not in L-glucose. GSH levels were lower in cells incubated with high glucose compared to control cells. Glyoxalase I activity and mRNA levels were elevated in diabetic lenses compared to non-diabetic control mouse lenses. MGO levels in diabetic lenses were higher than in control lenses. Incubation of lenses with buthionine sulfoximine (BSO) resulted in a dramatic decline in GSH but the MGO levels were similar to lenses incubated without BSO. Our data suggest that in mouse lenses MGO accumulation may occur independent of GSH concentration and in diabetes there is an upregulation of glyoxalase I, but this upregulation is inadequate to normalize MGO levels, which could lead to MGO retention and chemical modification of proteins.  相似文献   

7.
In the present study we employed a two-step culture system to study the expression of Fas, p53 and alpha-fetoprotein (AFP) in the development in vitro of human fetal germ cells. p53 mRNA was determined by Northern blotting, and Fas content was assessed by western blotting. RT-nested polymerase chain reaction (RT-nPCR) analysis was performed to determine the expression of AFP mRNA in different stages of fetal follicular development. Follicular cell apoptosis was evaluated by DNA fragmentation analyses (DNA ladder). The results showed that by day 7 of culture approximately one-sixth of fetal germ cells grew to class C oocytes (primary oocytes) from class B oocytes (primordial oocytes) or class A oocytes. On day 45 of culture, one-third of these primary follicles doubled in size. In the meantime, there was a high proportion apoptosis of follicular cells on days 35 or 45 of culture, as evident by a clear ladder pattern of DNA fragmentation upon electrophoretic analysis. Expression of Fas antigen and p53 mRNA increased in a time-dependent manner, while AFP mRNA was expressed on days 10 to 35, and disappeared on day 45. These results indicate that human fetal germ cells can develop in a two-step culture system and AFP may play an active role in the proliferation of these germ cells. At the late stage of follicular development in vitro, a number of follicular cells became apoptotic. Moreover, apoptosis may be the mechanism responsible for fetal germ cell regression and the Fas antigen and/or p53-mediated death pathway may be central in the induction of germ cell regression.  相似文献   

8.
Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for further studies to determine the limit of this response that definitely changes the fate of a fetus under these conditions of cellular stress.  相似文献   

9.
L-Arginine transport and nitric oxide (NO) synthesis (L-arginine/NO pathway) are stimulated by insulin, adenosine or elevated extracellular D-glucose in human umbilical vein endothelial cells (HUVEC). Adenosine uptake via the human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) has been proposed as a mechanism regulating adenosine plasma concentration, and therefore its vascular effects in human umbilical veins. Thus, altered expression and/or activity of hENT1 or hENT2 could lead to abnormal physiological plasma adenosine level. We have characterized insulin effect on adenosine transport in HUVEC cultured in normal (5 mM) or high (25 mM) D-glucose. Insulin (1 nM) increased overall adenosine transport associated with higher hENT2-, but lower hENT1-mediated transport in normal D-glucose. Insulin increased hENT2 protein abundance in normal or high D-glucose, but reduced hENT1 protein abundance in normal D-glucose. Insulin did not alter the reduced hENT1 protein abundance, but blocked the reduced hENT1 and hENT2 mRNA expression induced by high D-glucose. Insulin effect on hENT1 mRNA expression in normal D-glucose was blocked by N(G)-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and mimicked by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). L-NAME did not block insulin effect on hENT2 expression. In conclusion, insulin stimulation of overall adenosine transport results from increased hENT2 expression and activity via a NO-independent mechanism. These findings could be important in hyperglycemia-associated pathological pregnancies, such as gestational diabetes, where plasma adenosine removal by the endothelium is reduced, a condition that could alter the blood flow from the placenta to the fetus affecting fetus growth and development.  相似文献   

10.
Histone deacetylases (HDACs) play a key role in the regulation of acetylation status not only of histones but also of many other non-histone proteins involved in cell cycle regulation, differentiation or apoptosis. Therefore, histone deacetylase inhibitors (HDACi) have emerged as promising anticancer agents. Herein, we report the characterization of apoptosis in B-cell chronic lymphocytic leukemia (CLL) induced by two HDACi, Kendine 92 and SAHA. Both inhibitors induce dose-, time- and caspase-dependent apoptosis through the mitochondrial pathway. Interestingly, Kendine 92 and SAHA show a selective cytotoxicity for B lymphocytes and induce apoptosis in CLL cells with mutated or deleted TP53 as effectively as in tumor cells harboring wild-type TP53. The pattern of apoptosis-related gene and protein expression profile has been characterized. It has shown to be irrespective of TP53 status and highly similar between SAHA and Kendine 92 exposure. The balance between the increased BAD, BNIP3L, BNIP3, BIM, PUMA and AIF mRNA expression levels, and decreased expression of BCL-W, BCL-2, BFL-1, XIAP and FLIP indicates global changes in the apoptosis mRNA expression profile consistent with the apoptotic outcome. Protein expression analysis shows increased levels of NOXA, BIM and PUMA proteins upon Kendine 92 and SAHA treatment. Our results highlight the capability of these molecules to induce apoptosis not only in a selective manner but also in those cells frequently resistant to standard treatments. Thus, Kendine 92 is a novel HDACi with anticancer efficacy for non-proliferating CLL cells.  相似文献   

11.
12.
It has been reported that diabetic vascular dysfunction is associated with impaired function of large conductance Ca(2+) -activated K(+) (BK(Ca) ) channels. However, it is unclear whether impaired BK(Ca) channel directly participates in regulating diabetic vascular remodeling by altering cell growth in response to hyperglycemia. In the present study, we investigated the specific role of BK(Ca) channel in controlling apoptosis and proliferation under high glucose concentration (25 mM). The cDNA encoding the α+β1 subunit of BK(Ca) channel, hSloα+β1, was transiently transfected into human embryonic kidney 293 (HEK293) cells. Cloned BK(Ca) currents were recorded by both whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry and analysis of fragmented DNA by agarose gel electrophoresis. Cell proliferation was investigated by flow cytometry assays, MTT test, and immunocytochemistry. In addition, the expression of anti-apoptotic protein Bcl-2, intracellular Ca(2+) , and mitochondrial membrane potential (Δψm) were also examined to investigate the possible mechanisms. Our results indicate that inhibition of cloned BK(Ca) channels might be responsible for hyperglycemia-altered apoptosis and proliferation in HEK-hSloα+β1 cells. However, activation of BK(Ca) channel by NS1619 or Tamoxifen significantly induced apoptosis and suppressed proliferation in HEK-hSloα+β1 cells under hyperglycemia condition. When rat cerebral smooth muscle cells were cultured in hyperglycemia, similar findings were observed. Moreover, the possible mechanisms underlying the activation of BK(Ca) channel were associated with decreased expression of Bcl-2, elevation of intracellular Ca(2+) , and a concomitant depolarization of Δψm in HEK-hSloα+β1 cells. In conclusion, cloned BK(Ca) channel directly regulated apoptosis and proliferation of HEK293 cell under hyperglycemia condition.  相似文献   

13.
《Epigenetics》2013,8(10):1228-1235
Histone deacetylases (HDACs) play a key role in the regulation of acetylation status not only of histones but also of many other non-histone proteins involved in cell cycle regulation, differentiation or apoptosis. Therefore, histone deacetylase inhibitors (HDACi) have emerged as promising anticancer agents. Herein, we report the characterization of apoptosis in B-cell chronic lymphocytic leukemia (CLL) induced by two HDACi, Kendine 92 and SAHA. Both inhibitors induce dose-, time- and caspase-dependent apoptosis through the mitochondrial pathway. Interestingly, Kendine 92 and SAHA show a selective cytotoxicity for B lymphocytes and induce apoptosis in CLL cells with mutated or deleted TP53 as effectively as in tumor cells harboring wild-type TP53. The pattern of apoptosis-related gene and protein expression profile has been characterized. It has shown to be irrespective of TP53 status and highly similar between SAHA and Kendine 92 exposure. The balance between the increased BAD, BNIP3L, BNIP3, BIM, PUMA and AIF mRNA expression levels, and decreased expression of BCL-W, BCL-2, BFL-1, XIAP and FLIP indicates global changes in the apoptosis mRNA expression profile consistent with the apoptotic outcome. Protein expression analysis shows increased levels of NOXA, BIM and PUMA proteins upon Kendine 92 and SAHA treatment. Our results highlight the capability of these molecules to induce apoptosis not only in a selective manner but also in those cells frequently resistant to standard treatments. Thus, Kendine 92 is a novel HDACi with anticancer efficacy for non-proliferating CLL cells.  相似文献   

14.
目的:探讨苦参碱对体外培养的人鼻咽癌细胞增殖、凋亡及凋亡相关基因p53 mRNA和蛋白表达的影响,初步探讨苦参碱诱导人鼻咽癌细胞凋亡的可能机制。方法:采用MTT法检测不同浓度苦参碱(0、0.25、0.5、1、1.5、2 mg/ml)对CNE1、CNE2细胞增殖的影响;采用荧光定量PCR法检测这些浓度的苦参碱处理48 h后CNE2细胞p53 mRNA的变化;Western Blot检测其蛋白的变化情况。结果:MTT结果显示苦参碱具有抑制CNE1、CNE2细胞体外增殖作用,其抑制率存在浓度、时间依赖性。荧光定量PCR及Western Blot检测结果显示,苦参碱抑制CNE2细胞p53 mRNA和蛋白的表达,且亦呈浓度依赖性。结论:苦参碱抑制CNE2细胞的增殖,诱导细胞凋亡,呈现浓度、时间依赖性,其作用与抑制CNE2细胞中p53基因和蛋白的表达密切相关。  相似文献   

15.
Zhang P  Liu C  Zhang C  Zhang Y  Shen P  Zhang J  Zhang CY 《FEBS letters》2005,579(6):1446-1452
PGC-1alpha mRNA and protein are elevated in islets from multiple animal models of diabetes. Overexpression of PGC-1alpha impairs glucose-stimulated insulin secretion (GSIS). However, it is not well known which metabolic events lead to upregulation of PGC-1alpha in the beta-cells under pathophysiological condition. In present study, we have investigated effects of chronic hyperlipidemia and hyperglycemia on PGC-1alpha mRNA expression in isolated rat islets. Isolated rat islets are chronically incubated with 0, 0.2 and 0.4 mM oleic acid/palmitic acid (free fatty acids, FFA) or 5.5 and 25 mM glucose for 72 h. FFA dose-dependently increases PGC-1alpha mRNA expression level in isolated islets. FFA also increases PGC-1alpha expression in mouse beta-cell-derived beta TC3 cell line. In contrast, 25 mM glucose decreases expression level of PGC-1alpha. Inhibition of PGC-1alpha by siRNA improves FFA-induced impairment of GSIS in islets. These data suggest that hyperlipidemia and hyperglycemia regulate PGC-1alpha expression in islets differently, and elevated PGC-1alpha by FFA plays an important role in chronic hyperlipidemia-induced beta-cell dysfunction.  相似文献   

16.
Growing evidence indicates that maternal pathophysiological conditions, such as diabetes, influence fetal growth and could program metabolic disease in adulthood. Placental cells, particularly Hofbauer cells (HBCs), which are placental macrophages characterized by an anti-inflammatory profile (M2), can sense the modified maternal environment. The goal of this study was to investigate the direct effect of hyperglycemia on HBCs. We studied, at mRNA and protein levels, some markers of M2 and M1 (pro-inflammatory) macrophages in placentae from control and diabetic patients to assess the balance between pro- and anti-inflammatory macrophages: an imbalance of M2 to M1 macrophages has been observed in humans. We used pregnant rats, receiving a single injection of streptozotocin (STZ), as a model of maternal diabetes. We noticed a M2-to-M1 macrophage unbalance as we observed in human. An in vitro model of isolated rat HBCs was used to identify the direct effects of high glucose. We found that high glucose stimulation activated genes belonging to TLR (Toll-Like Receptor)-dependent inflammatory pathways. Moreover, the HBCs stimulated by high glucose switched their M2 profile towards M1, with increased expression of pro-inflammatory cytokines and markers. We also noticed that the oxidative-stress pathway was activated in response to high glucose driven by Hif-1α. In this study, we demonstrated that diabetes/hyperglycemia affect the anti-inflammatory profile of HBCs, by stimulating these cells to acquire an inflammatory profile leading to adverse consequences for the fetal–placental–maternal axis.  相似文献   

17.
18.
19.
Necrotizing enterocolitis (NEC) is characterized by the upregulation of proinflammatory proteins, nitrosative stress, and increased enterocyte apoptosis. We examined the expression and regulation of the Bcl-2/adenovirus EIB 19-kDa-interacting protein 3 (BNIP3), a pro-apoptotic gene regulated by nitric oxide (NO) in hepatocytes, in NEC. Newborn rats subjected to hypoxia and fed a conventional formula by gavage (FFH) developed NEC and demonstrated elevated expression of BNIP3 mRNA and protein in mucosal scrapings of the ileal samples and in the liver. In contrast, control rats [breast-fed (BF) without hypoxia] did not develop NEC or elevated BNIP3 expression in these tissues. BNIP3 expression paralleled the histological manifestation of NEC. Supplementation of the formula with L-Nomega-(1-iminoethyl)lysine, an inducible NO synthase inhibitor, reduced BNIP3 expression in FFH animals to the levels found in BF animals. Both hypoxia and peroxynitrite upregulated BNIP3 protein expression in human intestinal cells. Finally, ileal samples obtained from infants undergoing surgical resection for acute NEC demonstrated higher levels of BNIP3 protein. Because hypoxia and formation of reactive nitrogen species may promote gut barrier failure, we propose that upregulation of the cell death-related protein BNIP3 is one possible mechanism associated with enterocyte cell death observed in the intestine with NEC.  相似文献   

20.
As cell cycle regulation is fundamental to the normal growth and development of the placenta, the aim of the present study was to determine the immunolocalizations of cell cycle related proteins, which have key roles in proliferation, differentiation and apoptosis during the development of the rat placenta. Here immunohistochemistry has been used to localize G1 cyclins (D1, D3, E), which are major determinants of proliferation, CIP/KIP inhibitors (p21, p27, p57), p53 as a master regulator and proliferating cell nuclear antigen in all cell types of the rat term placenta. The proportion of each cell type immunolabeled was counted. Cyclin D1 and cyclin D3 were present mostly in cells of the fetal aspect of the placenta, whereas the G1/S cyclin E was present only in the spongio- and labyrinthine trophoblast populations. Among the CIP/KIP inhibitors, p21 was present only in cells of the fetal aspect whereas p27 and p57 were found in all cell types studied. p53 was only found in a small proportion of cells with no co-localization of p53 and p21. The data suggest that the cells of the fetal side of the rat placenta still have some proliferation potential which is kept in check by expression of the CIP/KIP cell cycle inhibitors, whereas cells of the maternal aspect have lost this potential. Apoptosis is only marginal in the term rat placenta. In conclusion, proliferation and apoptosis in rat placental cells appears controlled mostly by the CIP/KIP inhibitors in late pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号