首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age is the single most important prognostic factor in the development of many cancers. The major reason for this age-dependence is thought to be the progressive accumulation of oncogenic mutations and epigenetic changes. Similarly, mutagens are thought to be carcinogenic primarily by engendering oncogenic mutations. Yet while the accumulation of heritable somatic changes is expected to augment the incidence of oncogenic mutations, a major effect of increased mutation load is reduced fitness. We propose that the fitness of progenitor cell compartments substantially impacts on the selective advantage conferred by particular mutations. We hypothesize that reduced cellular fitness within aged stem cell pools can select for adaptive oncogenic events and thereby promote the initiation of cancer. Thus, certain oncogenic mutations may be adaptive within aged but not young stem cell pools. We further argue that accumulating genetic alterations with age or mutagen exposure might promote cancer not only by causing oncogenic hits within cells but also by leading to eventual reduction in stem cell fitness, which then selects for oncogenic events. Therefore, initial stages of cancer development may not be limited by the incidence of initiating oncogenic changes, but instead by contexts of reduced cellular fitness that select for these changes.  相似文献   

2.
The epigenetic progenitor origin of human cancer   总被引:16,自引:0,他引:16  
Cancer is widely perceived as a heterogeneous group of disorders with markedly different biological properties, which are caused by a series of clonally selected genetic changes in key tumour-suppressor genes and oncogenes. However, recent data suggest that cancer has a fundamentally common basis that is grounded in a polyclonal epigenetic disruption of stem/progenitor cells, mediated by 'tumour-progenitor genes'. Furthermore, tumour cell heterogeneity is due in part to epigenetic variation in progenitor cells, and epigenetic plasticity together with genetic lesions drives tumour progression. This crucial early role for epigenetic alterations in cancer is in addition to epigenetic alterations that can substitute for genetic variation later in tumour progression. Therefore, non-neoplastic but epigenetically disrupted stem/progenitor cells might be a crucial target for cancer risk assessment and chemoprevention.  相似文献   

3.
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.  相似文献   

4.
5.
6.
Stem cells and brain cancer   总被引:15,自引:0,他引:15  
  相似文献   

7.
Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies indicate that the carcinogenic effect of ionizing irradiation can in part be explained by increased selection for cells with p53 disruption, which protects progenitor cells both from immediate elimination and from long-term reductions in fitness following irradiation.  相似文献   

8.
PR‐SET7‐mediated histone 4 lysine 20 methylation has been implicated in mitotic condensation, DNA damage response and replication licensing. Here, we show that PR‐SET7 function in the liver is pivotal for maintaining genome integrity. Hepatocyte‐specific deletion of PR‐SET7 in mouse embryos resulted in G2 phase arrest followed by massive cell death and defect in liver organogenesis. Inactivation at postnatal stages caused cell duplication‐dependent hepatocyte necrosis, accompanied by inflammation, fibrosis and compensatory growth induction of neighboring hepatocytes and resident ductal progenitor cells. Prolonged necrotic regenerative cycles coupled with oncogenic STAT3 activation led to the spontaneous development of hepatic tumors composed of cells with cancer stem cell characteristics. These include a capacity to self‐renew in culture or in xenografts and the ability to differentiate to phenotypically distinct hepatic cells. Hepatocellular carcinoma in PR‐SET7‐deficient mice displays a cancer stem cell gene signature specified by the co‐expression of ductal progenitor markers and oncofetal genes.  相似文献   

9.
10.
The concept of ‘field cancerization’ describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones. We quantitatively analyze how the activation of oncogenic K-ras in individual Lgr5+ stem cells accelerates their cell division rate and creates a biased drift towards crypt clonality. K-ras mutant crypts then clonally expand within the epithelium through enhanced crypt fission, which distributes the existing Paneth cell niche over the two new crypts. Thus, an unequal competition between wild-type and mutant intestinal stem cells initiates a biased drift that leads to the clonal expansion of crypts carrying oncogenic mutations.  相似文献   

11.
12.
The observable responses of living systems to ionizing radiation depend on the level of biological organization studied. Understanding the relationships between the responses characteristic of the different levels of organization is of crucial importance. The main objective of the present study is to investigate how some cellular effects of radiation manifest at the tissue level by modeling mutation induction due to chronic exposure to inhaled radon progeny. For this purpose, a mathematical model of the bronchial epithelium was elaborated to quantify cell nucleus hits and cell doses. Mutagenesis was modeled considering endogenous as well as radiation-induced DNA damages and cell cycle shortening due to cell inactivation. The model parameters describing the cellular effects of radiation are obtained from experimental data. Cell nucleus hits, cell doses, and mutation induction were computed for the activity hot spots of the large bronchi at different exposures. Results demonstrate that the mutagenic effect of densely ionizing radiation is dominated by cell cycle shortening due to cell inactivation and not by DNA damages. This suggests that radiation burdens of non-progenitor cells play a significant role in mutagenesis in case of protracted exposures to densely ionizing radiation. Mutation rate as a function of dose rate exhibits a convex shape below a threshold. This threshold indicates the exhaustion of the tissue regeneration capacity of local progenitor cells. It is suggested that progenitor cell hyperplasia occurs beyond the threshold dose rate, giving a possible explanation of the inverse dose-rate effect observed in the epidemiology of lung cancer among uranium miners.  相似文献   

13.
Tissues contain distinct stem cell niches, but whether cell turnover is coordinated between niches during growth is unknown. Here, we report that in mouse skin, hair growth is accompanied by sebaceous gland and interfollicular epidermis expansion. During hair growth, cells in the bulge and outer root sheath temporarily upregulate the glutamate transporter SLC1A3, and the number of SLC1A3+ basal cells in interfollicular epidermis and sebaceous gland increases. Fate mapping of SLC1A3+ cells in mice revealed transient expression in proliferating stem/progenitor cells in all three niches. Deletion of slc1a3 delays hair follicle anagen entry, uncouples interfollicular epidermis and sebaceous gland expansion from the hair cycle, and leads to reduced fur density in aged mice, indicating a role of SLC1A3 in stem/progenitor cell activation. Modulation of metabotropic glutamate receptor 5 activity mimics the effects of SLC1A3 deletion or inhibition. These data reveal that stem/progenitor cell activation is synchronized over distinct niches during growth and identify SLC1A3 as a general marker and effector of activated epithelial stem/progenitor cells throughout the skin.  相似文献   

14.

Background  

Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer.  相似文献   

15.
Aging is characterized by a gradual functional decline of tissues with age. Adult stem and progenitor cells are responsible for tissue maintenance, repair, and regeneration, but during aging, this population of cells is decreased or its activity is reduced, compromising tissue integrity and causing pathologies that increase vulnerability, and ultimately lead to death. The causes of stem cell exhaustion during aging are not clear, and whether a reduction in stem cell function is a cause or a consequence of aging remains unresolved. Here, we took advantage of a mouse model of induced adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion can promote premature aging. After a short period of partial repetitive depletion of this adult stem cell population in mice, we observed increased kyphosis and hair graying, and reduced fat mass, all of them signs of premature aging. It is interesting that cellular senescence was identified in kidney after this partial repetitive Sox2+ cell depletion. To confirm these observations, we performed a prolonged protocol of partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the analysis of the expression of genetic markers clearly corroborated that adult stem cell exhaustion can lead to cellular senescence induction and premature aging.  相似文献   

16.
BACKGROUND: Somatic stem and progenitor cell division is likely to be an important determinant of tumor development. Each division is accompanied by a risk of fixing genetic mutations, and/or generating innately immortal cells that escape normal physiological controls. AIM: Using biological information, we aimed to devise a theoretical model for mammary gland development that described the effect of various stem/progenitor cells activities on the demographics of adult mammary epithelial cell populations. RESULTS: We found that mammary ductal trees should develop in juvenile mice despite widely variant levels of activity in the progenitor compartment. Sequestration (inactivation) of progenitor cells dramatically affected the aging-maturation of the population without affecting the total regenerative capacity of the gland. Our results showed that if stem and progenitor cells can be demonstrated in glands regenerated by serial transplantation, they originated in a canonical primary stem cell (providing a functional definition of mammary stem cells). Finally, when the probability of symmetric division of stem cells increased above a threshold, the mammary epithelial population overall was immortal during serial transplantation. CONCLUSIONS: This model provides, (1) a theoretical framework for testing whether the phenotypes of genetically modified mice (many of which are breast cancer models) derive from changes of stem and progenitor activity, and (2) a means to evaluate the resolving power of functional assays of regenerative capacity in mammary epithelial cell populations.  相似文献   

17.
Canonical Wnt signaling has emerged as a critical regulatory pathway for stem cells. The association between ectopic activation of Wnt signaling and many different types of human cancer suggests that Wnt ligands can initiate tumor formation through altered regulation of stem cell populations. Here we have shown that mice deficient for the Wnt co-receptor Lrp5 are resistant to Wnt1-induced mammary tumors, which have been shown to be derived from the mammary stem/progenitor cell population. These mice exhibit a profound delay in tumorigenesis that is associated with reduced Wnt1-induced accumulation of mammary progenitor cells. In addition to the tumor resistance phenotype, loss of Lrp5 delays normal mammary development. The ductal trees of 5-week-old Lrp5-/- females have fewer terminal end buds, which are structures critical for juvenile ductal extension presumed to be rich in stem/progenitor cells. Consequently, the mature ductal tree is hypomorphic and does not completely fill the fat pad. Furthermore, Lrp5-/- ductal cells from mature females exhibit little to no stem cell activity in limiting dilution transplants. Finally, we have shown that Lrp5-/- embryos exhibit substantially impaired canonical Wnt signaling in the primitive stem cell compartment of the mammary placodes. These findings suggest that Lrp5-mediated canonical signaling is required for mammary ductal stem cell activity and for tumor development in response to oncogenic Wnt effectors.  相似文献   

18.
Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically.  相似文献   

19.
20.

Background

Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined.

Methodology/Principal Findings

We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K.

Conclusions/Significance

We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号