首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
According to molecular sequence data Crustacea and not Myriapoda seem to be the sister‐group to Insecta. This makes it necessary to reconsider how the morphology of their eyes fit with these new cladograms. Homology of facetted eye structures in Insecta (Hexapoda in the sense of Ento‐ and Ectognatha) and Crustacea is clearly supported by identical numbers of cells in an ommatidium (two corneageneous or primary pigment cells, four Semper cells which build the crystalline cone and primarily eight retinula cells). These cell numbers are retained even when great functional modification occurs, especially in the region of the dioptric apparatus. There are two different possibilities to explain differences in eye structure in Myriapoda depending on their phylogenetic position in the cladogram of Mandibulata. In the traditional Tracheata cladogram, eyes of Myriapoda must be secondarily modified. This modification can be explained using the different evolutionary pathways of insect facetted eyes to insect larval eyes (stemmata) as an analogous model system. Comparative morphology of larval insect eyes from all holometabolan orders shows that there are several evolutionary pathways which have led to different types of stemmata and that the process always involved the breaking up the compound eye into individual larval ommatidia. Further evolution led on many occasions to so‐called fusion‐stemmata that occur convergently in each holometabolic order and reveals, in part, great structural similarities to the lateral ocelli of myriapods. As myriapodan eyes cannot be regarded as typical mandibulate ommatidia, their structure can be explained as a modified complex eye evolved in a comparable way to the development to the fusion‐stemmata of insect larvae. The facetted eyes of Scutigera (Myriapoda, Chilopoda) must be considered as secondarily reorganized lateral myriapodan stemmata, the so‐called ‘pseudo‐compound eyes’. New is a crystalline cone‐like vitreous body within the dioptric apparatus. In the new cladogram with Crustacea and Insecta as sister‐groups however, the facetted eyes of Scutigera can be interpreted as an old precursor of the Crustacea – Insecta facetted eye with modified ommatidia having a four‐part crystalline cone, etc. as a synapomorphy. Lateral ocelli of all the other Myriapoda are then modified like insect stemmata. The precursor is then the Scutigera‐Ommatidium. In addition further interpretations of evolutionary pathways of myriapodan morphological characters are discussed.  相似文献   

2.
One-step PCR amplification of complete arthropod mitochondrial genomes   总被引:11,自引:0,他引:11  
A new PCR primer set which enables one-step amplification of complete arthropod mitochondrial genomes was designed from two conserved 16S rDNA regions for the long PCR technique. For this purpose, partial 16S rDNAs amplified with universal primers 16SA and 16SB were newly sequenced from six representative arthropods: Armadillidium vulgare and Macrobrachium nipponense (Crustacea), Anopheles sinensis (Insecta), Lithobius forficatus and Megaphyllum sp. (Myriapoda), and Limulus polyphemus (Chelicerata). The genomic locations of two new primers, HPK16Saa and HPK16Sbb, correspond to positions 13314-13345 and 12951-12984, respectively, in the Drosophila yakuba mitochondrial genome. The usefulness of the primer set was experimentally examined and confirmed with five of the representative arthropods, except for A. vulgare, which has a linearized mitochondrial genome. With this set, therefore, we could easily and rapidly amplify complete mitochondrial genomes with small amounts of arthropod DNA. Although the primers suggested here were examined only with arthropod groups, a possibility of successful application to other invertebrates is very high, since the high degree of sequence conservation is shown on the primer sites in other invertebrates. Thus, this primer set can serve various research fields, such as molecular evolution, population genetics, and molecular phylogenetics based on DNA sequences, RFLP, and gene rearrangement of mitochondrial genomes in arthropods and other invertebrates.  相似文献   

3.
    
Abstract: Eyes other than those of trilobites are rarely preserved in the fossil record. We describe here a set of six tiny, isolated, three‐dimensionally preserved compound eyes. These secondarily phosphatized eyes were etched from ‘Orsten’ limestone nodules dated to the Agnostus pisiformis Biozone from the Cambrian Alum Shale Formation of Sweden. The ovoid eyes arise from an elongated stalk, their surface being covered by a mosaic of regular and hexagonal‐shaped facets representing the surface of ommatidia. Facet size and pattern change within the same specimen from the posterior to the anterior end. With regard to some morphological criteria, we grouped the material in two different morphotypes, type A and B, the first being represented by specimens of two different developmental stages. From stage to stage, mostly growth in overall size and addition of new ommatidia was noticed. Among the meiobenthic ‘Orsten’ arthropods, only the crustacean Henningsmoenicaris scutula has been described as possessing stalked eyes, but the eyes of the largest specimen with preserved eyes of this species are much smaller than the new eyes and do not display any kind of ommatidia on their visual surface. However, fragments of larger specimens of H. scutula and the co‐occurrence of this species with the new isolated eyes in the sieving residues make it likely that the latter belong to this species but belong to more advanced stages than those described previously of H. scutula. Ontogenetically, the eye stalks of this fossil crustacean elongate progressively, while the regular hexagonal facets, lacking in early stages, appear later on.  相似文献   

4.
Using electron microscopy we describe an accessory lateral eye for Cylindroiulus, a diplopod. The accessory eye is situated at the cell body rind of the optic lobes, deep inside the head, and is composed of six R-cells; a dioptric apparatus is absent. Comparison reveals that many arthropods possess accessory lateral eyes in addition to the compound eyes or lateral ocelli. Their homology and distribution among the arthropod main lineages is discussed along with characters that may be useful for reconstructing phylogeny.  相似文献   

5.
  总被引:1,自引:0,他引:1  
The retinal visual pigments of 52 species of deep-sea fish were measured by partial bleaching of detergent extracts. The retinae of 45 species contained only a single rhodopsin with maximum absorbance (λmax) at a wavelength between 474 and 490 nm, matching both the region of highest intensity downwelling sunlight and the maximum emission of most deep-sea bioluminescence. Seven species were shown to have more than one visual pigment within their retinae and these had λmax values that generally fell outside the usual range. One of these, Bonapartia pedaliota , was particularly interesting as, unlike most such multipigment species, it had one rhodopsin and one porphyropsin pigment, apparently based on different opsins. The relative proportions of the visual pigments in the seven multipigment species are presented.  相似文献   

6.
Adult Hyalomma truncatum ticks with uncovered and foil-covered eyes were exposed to an upright-positioned rectangle as a target giving a luminance contrast ratio of 5:1 at a sun-simulating radiation. The transmission rate of the foil was less than 0.003%. Significantly (p0.05) more locomotorally active ticks with uncovered eyes (36.6%) responded to the target than ticks with foil-covered eyes (7.3%). When the rectangle was illuminated by monochromatic light at wavelengths ranging between 420 and 648 nm, the target induced a positive scototaxis in ticks with uncovered eyes regardless of the wavelength range. In contrast, ticks with covered eyes did not exhibita positive scototaxis at wavelength ranges of 553–585 and 608–648 nm and very few ticks responded only to other wavelength ranges. The results indicate that the eyes are the only or at least the most essential sense organs in the visual system of adult H. truncatum ticks.  相似文献   

7.
    
Jumping spiders are known for their extraordinary cognitive abilities. The underlying nervous system structures, however, are largely unknown. Here, we explore and describe the anatomy of the brain in the jumping spider Marpissa muscosa (Clerck, 1757) by means of paraffin histology, X-ray microCT analysis and immunohistochemistry as well as three-dimensional reconstruction. In the prosoma, the CNS is a clearly demarcated mass that surrounds the esophagus. The anteriormost neuromere, the protocerebrum, comprises nine bilaterally paired neuropils, including the mushroom bodies and one unpaired midline neuropil, the arcuate body. Further ventrally, the synganglion comprises the cheliceral (deutocerebrum) and pedipalpal neuropils (tritocerebrum). Synapsin-immunoreactivity in all neuropils is generally strong, while allatostatin-immunoreactivity is mostly present in association with the arcuate body and the stomodeal bridge. The most prominent neuropils in the spider brain, the mushroom bodies and the arcuate body, were suggested to be higher integrating centers of the arthropod brain. The mushroom body in M. muscosa is connected to first and second order visual neuropils of the lateral eyes, and the arcuate body to the second order neuropils of the anterior median eyes (primary eyes) through a visual tract. The connection of both, visual neuropils and eyes and arcuate body, as well as their large size corroborates the hypothesis that these neuropils play an important role in cognition and locomotion control of jumping spiders. In addition, we show that the architecture of the brain of M. muscosa and some previously investigated salticids differs significantly from that of the wandering spider Cupiennius salei, especially with regard to structure and arrangement of visual neuropils and mushroom body. Thus, we need to explore the anatomical conformities and specificities of the brains of different spider taxa in order to understand evolutionary transformations of the arthropod brain.  相似文献   

8.
9.
10.
The morphology of hemolymph circulatory systems has been studied in many arthropod groups over the past decades. In most cases, however, the focus of these studies has been the vascular system, while its counterpart, the lacunar system, has often been neglected. To further understanding of the interrelationships between these two complementary subsystems, we investigated both, the hemolymph vascular system and the hemolymph lacunar system, of the decapod Penaeus vannamei using 3D-imaging techniques (micro-computed tomography and confocal laser scanning microscopy) in combination with 3D reconstruction. Major parts of the vascular and lacunar system are described. Our insights into their morphology are used to derive functional conclusions for a model illustrating the interrelationships between the two subsystems. The morphology of and the functional interaction between the vascular and lacunar systems are discussed in the context of the debate on “open vs. closed circulatory systems.”  相似文献   

11.
兴安落叶松结实规律与长短枝习性的关系   总被引:1,自引:0,他引:1  
1987年5月,大兴安岭林区发生的特大森林火灾,实属世界罕见,火灾面积达1.0×10~6ha 多。大量的火烧迹地亟待更新、无论是人工更新还是人工促进天然更新,其中关键的问题之一是种子的来源,在大兴安岭地区,兴  相似文献   

12.
    

Larvae of decapod and stomatopod crustaceans possess paired compound eyes not unlike those of adult crustaceans. However, the visual demands of larval and adult life differ considerably. Furthermore, the eyes of adult stomatopods appear to be far more specialized than those of the larvae. We examined eyes of several stomatopod species just before and after larval metamorphosis. At this time, the entire larval retina is joined by a new, adult‐type retinal array which gradually replaces the remnants of the larval retina. The new retina of the postlarva is anatomically similar to that of the full‐grown adult, and has virtually identical assemblages of intrarhabdomal filters. We determined the photopigments of Gonodactylus aloha, the only species for which we were able to obtain both larval and adult specimens, using microspectrophotometry. The single middle‐wavelength larval rhodopsin (λmax= 499 nm) disappears at metamorphosis; none of the 10 classes of adult rhodopsins has λmax between 473 and 510 nm. This metamorphic change of visual pigment does not occur in a comparison species of decapod crustacean, the blue crab Callinectes sapidus. Here, rhodopsins both of the megalops larva and the adult had λmax at 503–504 nm. The difference between these two species can be explained by the varying ecological requirements of their larvae and adults, and more study of visual pigments in retinas of larval and adult crustaceans is warranted.  相似文献   

13.
P Park  T Ohno 《Tissue & cell》1985,17(5):699-707
It was found by electron microscopy that extracellular darkly stained materials (DSM) observed abundantly in a case of malignant schwannoma were closely related to both basal lamina and fibrous long spacing collagen (FLS). The FLS were characterized by the cross bands with a 95 nm periodicity, and longitudinally aligned filaments, 9 nm in diameter, while DSM consisted of amorphous material, and 9 nm filaments. The filaments in DSM and FLS were similar in diameter and morphology to reticular fibres in basal laminae. The DSM were continuous with both dark bands of FLS and basal laminae. These results indicate that basal laminae may be the common origin of DSM and FLS. Ultrastructural features of longitudinal, transverse and oblique sections were described.  相似文献   

14.
Centrifugal fibers that originate in the brain and project to the Limulus peripheral visual system synthesize and store octopamine and conjugates of octopamine and tyramine. In a previous study we showed that depolarization, induced by elevating extracellular K+, stimulated a preferential release of octopamine from these fibers. Here we show that veratridine-induced depolarization stimulates a rapid, transient release of octopamine and a delayed, sustained release of amine conjugates. Veratridine-stimulated release of both octopamine and amine conjugates depends on the influx of extracellular Ca2+ and is blocked by tetrodotoxin or the absence of extracellular Na+. The depolarization-stimulated release of amine conjugates raises the possibility that these molecules serve as intercellular messengers in the Limulus peripheral visual system.  相似文献   

15.
A new fossil spider, Vectaraneus yulei gen. et sp. nov., from the Eocene Bembridge Marls Insect Bed of the Isle of Wight, shows internal anatomy, including book lungs and tracheae, preserved by calcium carbonate replacement. The wide, medially positioned, tracheal spiracle and large tracheae which enter the prosoma are adaptations for an amphibious mode of life. The spider is placed in Cybaeidae Simon, 1898, Argyronetinae Menge, 1869, a subfamily which includes the Recent European Water Spider, Argyroneta aquatica (Clerck, 1757). The only previously described Bembridge Marls spider, Eoatypus woodwardii McCook, 1888, is redescribed; it is unrelated to Vectaraneus . The holotype of Argyroneta antiqua Von Heyden (1859) is redescribed; it is not an Argyroneta . Specimens referred to A. antiqua by Bertkau (1878) probably belong in Argyronetinae Menge, 1869, and this subfamily is emended herein.  相似文献   

16.
ABSTRACT. Discharge from the male accessory reproductive gland (ARG) by the male grasshopper, Melanoplus sanguinipes (Fabr.), has been studied by assay of a characterized product, a glycoprotein LHPI, and the rate of formation of spermatophores. LHPI is an exclusive long hyaline gland (a prominent ARG tubule type) product whose discharge is symmetrical from the bilaterally paired glands. LHPI forms 65% of a viscous secretion that is discharged concomitantly with the spermatophores. Though low ARG reserves in 5-day-old males limit both the number of spermatophores formed and LHPI discharged in copulations ≤6 h, this appears to be the result of shorter copulations. The number of spermarophores formed in 1 h was not impaired by general depletion of ARG protein (by repeated copulations) or by selective depletion of long hyaline gland protein (by unilateral and bilateral long hyaline gland removal), though these manipulations reduced LHPI discharge by 22%, 44% and 100%, respectively. However, 56% of spermatophores formed by males with the long hyaline gland bilaterally ablated failed to uncoil properly. These results indicate LHPI and/or other long hyaline gland proteins may act as lubricants. Unlike spermatophore formation and LHPI discharge, which increased steadily up to 90–120 min then levelled off, transfer of radiolabelled male ejaculate to the spermatheca was very variable. In 90 min copulations, only 1% of the total radioactivity (representing c. 5 μg protein) lost from the ARG complex was transferred to the spermatheca. The importance of male-derived protein in vitellogenesis is discussed.  相似文献   

17.
    
The compound eyes of three taxa of Rhenish Lower Devonian eurypterids are examined and compared with those known from other eurypterids and the extant horseshoe crab Limulus polyphemus. The lateral eyes of the small species Rhenopterus diensti, a phylogenetically basal representative of the stylonurine clade, are characterized by a comparatively low number of lenses and high interommatidial angle Δφ (2.8°). The comparatively limited visual capacities of R. diensti are more similar to L. polyphemus than to its closer relatives of the eurypterine clade and perhaps this reflects a progression of lateral eye structure in the evolution of eurypterids as a whole. The number of eye facets in Adelophthalmus sievertsi is higher than that in the supposed ambush predator Acutiramus cummingsi, but lower than that in other ‘swimming’ eurypterids (Eurypterina). Due to poor preservation, no other eye parameters could be analysed in this species, but further morphological attributes and geographical distribution designate the mid‐sized A. sievertsi as an able swimmer. A low interommatidial angle Δφ of less than 1° confirms that the visual capacities of Jaekelopterus rhenaniae are in line with an interpretation of this giant species as an active high‐level predator. The inferred lifestyles of adult individuals of these three, co‐occurring Rhenish eurypterids indicate niche differentiation avoiding to some degree the competition for food in their marginal marine to delta plain transitional habitats.  相似文献   

18.
Somatotopic arrangements of cells and fibers within the dorsal columns and the dorsal column nuclei have been mapped most precisely by electrophysiological recording methods. This study uses an anatomical approach to evaluate the precision of individual digital nerve projections to the cuneate nucleus (CN) in young macaque monkeys. Digital nerves supplying about one-half the palmar skin of a digit were surgically exposed, cut, and treated with wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) on 3 successive days. After 2 additional days, animals were killed and medullas were recovered for study of serial sections reacted to display axons labeled by transganglionic transport of label. Labeled afferent fibers from each digit were found within a circumscribed columnar zone extending through the caudal CN and rostrally throughout the pars rotunda of CN. At caudal levels, diffuse projections reach the dorsal edge of the CN; more rostrally, they shift into deeper parts of the nucleus and are heaviest along its ventral and medial edges at levels near the obex. Fibers from the thumb (digit 1) project lateral (and ventral) to those from digit 2, and projections from digit 3 are medial to those from 2. Each digital projection field is closely adjacent to that from the adjacent digit. Few fibers extend to the rostral CN. Projection fields of homologous digits are quite symmetrical on the two sides. Although there do seem to be some differences in the somatotopic arrangement of digital input in macaques compared to other nonprimate mammals studied previously, these observations (precisely organized, circumscribed fields for separate digits) define a system well designed for transmission of data encoding spatial relationships.  相似文献   

19.
视觉通路的研究在神经科学、 仿生应用和医学治疗上都具有十分重要的意义。西方蜜蜂Apis mellifera作为神经生物学研究的重要模式生物已被广泛地应用于视觉通路的研究。蜜蜂的视觉器官包括1对复眼和3只单眼, 复眼是形成视觉的主要感觉器官。视叶是蜜蜂传递和处理视觉信息的主要神经构造, 它包括视神经节层、 视髓质层、 视小叶和前视结节4个等级的神经纤维网。复杂的视觉信息在经过大脑的各级神经时被分离, 以许多空间隔离的并行连续的视觉通路传递和加工, 然后汇集到高级脑中枢, 部分甚至与其他感觉模态的信息相整合, 最终输出有效信息来调控蜜蜂的各种行为。本文按照信息在视叶中逐级传递的顺序对蜜蜂复眼的视觉通路研究进展进行综述。  相似文献   

20.
Light intensity limits foraging activity in nocturnal and crepuscular bees   总被引:4,自引:0,他引:4  
A crepuscular or nocturnal lifestyle has evolved in bees severaltimes independently, probably to explore rewarding pollen sourceswithout competition and to minimize predation and nest parasites.Despite these obvious advantages, only few bee species are nocturnal.Here we show that the sensitivity of the bee apposition eyeis a major factor limiting the ability to forage in dim light.We present data on eye size, foraging times, and light levelsfor Megalopta genalis (Augochlorini, Halictidae) in Panama,and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae)in Utah, USA. M. genalis females forage exclusively during twilight,but as a result of dim light levels in the rain forest, theyare adapted to extremely low intensities. The likely factorlimiting their foraging activity is finding their nest entranceon return from a foraging trip. The lowest light intensity atwhich they can do this, both in the morning and the evening,is 0.0001 cd m–2. Therefore, they leave the nest at dimmerlight levels in the morning than in the evening. Lasioglossum(Sphecodogastra) foraging is limited by light intensity in theevening, but probably by temperature in the morning in the temperateclimate of Utah. We propose that the evolution of nocturnalityin bees was favored by the large variance in the size of females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号