首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroserpin is a brain-specific serine protease inhibitor that is expressed in the developing and adult nervous system. Its expression profile led to suggestions that it played roles in neuronal growth and connectivity. In this study, we provide direct evidence to support a role for neuroserpin in axon and dendritic growth. We report that axon growth is enhanced while axon and dendrite diameter are reduced following neuroserpin treatment of hippocampal neurons. More complex effects are seen on dendritic growth and branching with neuroserpin-stimulating dendritic growth and branching in young neurons but switching to an inhibitory response in older neurons. The protease inhibitory activity of neuroserpin is not required to activate changes in neuronal morphology and a proportion of responses are modulated by an antagonist to the LRP1 receptor. Collectively, these findings support a key role for neuroserpin as a regulator of neuronal development through a non-inhibitory mechanism and suggest a basis for neuroserpin's effects on complex emotional behaviours and recent link to schizophrenia.  相似文献   

2.
Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.  相似文献   

3.
Inhibition of the proteasome by lactacystin, a specific blocker of the catalytic beta-subunits, results in transient neurite outgrowth by neuronal cell lines. Vice versa, as demonstrated in this study, treatment of pheochromocytoma (PC12) cells with nerve growth factor (NGF) or other differentiating agents reduces proteasomal activity. This is accompanied by an increase in mRNA and protein levels of the catalytically active subunits beta1, beta2 and beta5, but not of their inducible counterparts, indicating changes in subunit composition of the proteasome during neuronal differentiation. In contrast to neuronal cell lines, however, pre-treatment of primary neurons with proteasome inhibitors completely prevents axon formation, and lower concentrations of lactacystin (0.5-5 microm) significantly reduce axonal elongation and branching in vitro. Furthermore, established axonal networks degenerate rapidly and long-term survival of peripheral neurons is impaired in the presence of proteasome inhibitors. Axonal pathology is reminiscent of the morphological changes observed in neurodegenerative disorders and supports a crucial role of the constitutive catalytic subunits in axon initiation, maintenance and regeneration.  相似文献   

4.
Axonogenesis involves a shift from uniform delivery of materials to all neurites to preferential delivery to the putative axon, supporting its more rapid extension. Waves, growth cone‐like structures that propagate down the length of neurites, were shown previously to correlate with neurite growth in dissociated cultured hippocampal neurons. Waves are similar to growth cones in their structure, composition and dynamics. Here, we report that waves form in all undifferentiated neurites, but occur more frequently in the future axon during initial neuronal polarization. Moreover, wave frequency and their impact on neurite growth are altered in neurons treated with stimuli that enhance axonogenesis. Coincident with wave arrival, growth cones enlarge and undergo a marked increase in dynamics. Through their engorgement of filopodia along the neurite shaft, waves can induce de novo neurite branching. Actin in waves maintains much of its cohesiveness during transport whereas actin in nonwave regions of the neurite rapidly diffuses as measured by live cell imaging of photoactivated GFP‐actin and photoconversion of Dendra‐actin. Thus, waves represent an alternative axonal transport mechanism for actin. Waves also occur in neurons in organotypic hippocampal slices where they propagate along neurites in the dentate gyrus and the CA regions and induce branching. Taken together, our results indicate that waves are physiologically relevant and contribute to axon growth and branching via the transport of actin and by increasing growth cone dynamics. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

5.
Several G protein-coupled receptors (GPCRs) mediate neuronal cell migration and survival upon activation by their native peptide ligands but activate death-signaling pathways when activated by certain non-native ligands. In cultured neurons, we recently described expression of the unique seven-transmembrane (7TM) -G protein-coupled receptor, APJ, which is also strongly expressed in neurons in the brain and various cell types in other tissues. We now demonstrate that the endogenous APJ peptide ligand apelin activates signaling pathways in rat hippocampal neurons and modulates neuronal survival. We found that (i) both APJ and apelin are expressed in hippocampal neurons; (ii) apelin peptides induce phosphorylation of the cell survival kinases AKT and Raf/ERK-1/2 in hippocampal neurons; and (iii) apelin peptides protect hippocampal neurons against NMDA receptor-mediated excitotoxicity, including that induced by human immunodeficiency virus type 1. Thus, apelin/APJ signaling likely represents an endogenous hippocampal neuronal survival response, and therefore apelin should be further investigated as a potential neuroprotectant against hippocampal injury.  相似文献   

6.
Hong YM  Jo DG  Lee JY  Chang JW  Nam JH  Noh JY  Koh JY  Jung YK 《FEBS letters》2003,543(1-3):170-173
ARC is a caspase recruitment domain-containing molecule that plays an important role in the regulation of apoptosis. We examined ARC expression during neuronal cell death following ischemic injury in vivo and in vitro. After exposure to transient global ischemic conditions, the expression of ARC was substantially reduced in the CA1 region of hippocampus in a time-dependent manner with concomitant increase of TUNEL-positive cells. Quantitative analysis using Western blotting exhibited that most of ARC protein disappeared in the cultured hippocampal neurons exposed to hypoxia for 12 h and showing 60% cell viability. Forced expression of ARC in the primary cultures of hippocampal neurons or B103 neuronal cells significantly reduced hypoxia-induced cell death. Further, the C-terminal P/E rich region of ARC was effective to attenuate hypoxic insults. These results suggest that down-regulation of ARC expression in hippocampal neurons may contribute to neuronal death induced by ischemia/hypoxia.  相似文献   

7.
Neurotrophins play important roles in the response of adult neurons to injury. The intracellular signaling mechanisms used by neurotrophins to regulate survival and axon growth in the mature CNS in vivo are not well understood. The goal of this study was to define the role of the extracellular signal-regulated kinases 1/2 (Erk1/2) pathway in the survival and axon regeneration of adult rat retinal ganglion cells (RGCs), a prototypical central neuron population. We used recombinant adeno-associated virus (AAV) to selectively transduce RGCs with genes encoding constitutively active or wild-type mitogen-activated protein kinase kinase 1 (MEK1), the upstream activator of Erk1/2. In combination with anterograde and retrograde tracing techniques, we monitored neuronal survival and axon regeneration in vivo. MEK1 gene delivery led to robust and selective transgene expression in multiple RGC compartments including cell bodies, dendrites, axons and targets in the brain. Furthermore, MEK1 activation induced in vivo phosphorylation of Erk1/2 in RGC bodies and axons. Quantitative analysis of cell survival demonstrated that Erk1/2 activation promoted robust RGC neuroprotection after optic nerve injury. In contrast, stimulation of the Erk1/2 pathway was not sufficient to induce RGC axon growth beyond the lesion site. We conclude that the Erk1/2 pathway plays a key role in the survival of axotomized mammalian RGCs in vivo, and that activation of other signaling components is required for axon regeneration in the growth inhibitory CNS environment.  相似文献   

8.
Shi SH  Cheng T  Jan LY  Jan YN 《Current biology : CB》2004,14(22):2025-2032
In developing hippocampal neurons in culture, the evolutionarily conserved polarity complex mPar3/mPar6/aPKC selectively accumulates at the tip of one, and only one, of the immature neurites of a neuron and thus specifies the axon and generates neuronal polarity. How mPar3/mPar6 is enriched at the tip of the nascent axon, but not the dendrites, is not fully understood. Here, we report that mPar3 forms a complex with adenomatous polyposis coli (APC) and kinesin superfamily (KIF) 3A, proteins that move along microtubules. In polarizing hippocampal neurons, APC selectively accumulates at the nascent axon tip and colocalizes with mPar3. Expression of dominant-negative C terminus deletion mutants of APC or ectopic expression of APC leads to dislocalization of mPar3 and defects in axon specification and neuronal polarity. In addition to spatial polarization of APC, the selective inactivation of the GSK-3beta activity at the nascent axon tip is required for mPar3 targeting and polarization and establishing neuronal polarity. These results suggest that mPar3 is polarized in developing neurons through APC- and kinesin-mediated transport to the plus ends of rapidly growing microtubules at the nascent axon tip, a process that involves a spatially regulated GSK-3beta activity.  相似文献   

9.
During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their cortical targets prior to the development of interstitial branches. High resolution imaging of dissociated living cortical neurons for many hours revealed that the growth cone demarcates sites of future axon branching by lengthy pausing behaviors and enlargement of the growth cone. After a new growth cone forms and resumes forward advance, filopodial and lamellipodial remnants of the large paused growth cone are left behind on the axon shaft from which interstitial branches later emerge. To investigate how the cytoskeleton reorganizes at axon branch points, we fluorescently labeled microtubules in living cortical neurons and imaged the behaviors of microtubules during new growth from the axon shaft and the growth cone. In both regions microtubules reorganize into a more plastic form by splaying apart and fragmenting. These shorter microtubules then invade newly developing branches with anterograde and retrograde movements. Although axon branching of dissociated cortical neurons occurs in the absence of targets, application of a target-derived growth factor, FGF-2, greatly enhances branching. Taken together, these results demonstrate that growth cone pausing is closely related to axon branching and suggest that common mechanisms underlie directed axon growth from the terminal growth cone and the axon shaft.  相似文献   

10.
11.
Lee SH 《Molecules and cells》2005,20(2):256-262
The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-beta-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, beta-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.  相似文献   

12.
13.
Depending upon the stimulus, neuronal cell death can either be triggered from the cell body (soma) or the axon. We investigated the origin of the degeneration signal in amyloid β (Aβ) induced neuronal cell death in cultured in vitro hippocampal neurons. We discovered that Aβ1–42 toxicity-induced axon degeneration precedes cell death in hippocampal neurons. Overexpression of Bcl-xl inhibited both axonal and cell body degeneration in the Aβ-42 treated neurons. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) blocks axon degeneration in a variety of paradigms, but it cannot block neuronal cell body death. Therefore, if the neuronal death signals in Aβ1–42 toxicity originate from degenerating axons, we should be able to block neuronal death by inhibiting axon degeneration. To explore this possibility we over-expressed Nmnat1 in hippocampal neurons. We found that inhibition of axon degeneration in Aβ1–42 treated neurons prevented neuronal cell death. Thus, we conclude that axon degeneration is the key component of Aβ1–42 induced neuronal degeneration, and therapies targeting axonal protection can be important in finding a treatment for Alzheimer’s disease.  相似文献   

14.
The development of a polarised morphology with multiple dendrites and a single axon is an essential step in the differentiation of neurons. The establishment of neuronal polarity is directed by the sequential activity of the GTPases Rap1B and Cdc42. Rap1B is initially present in all neurites of unpolarised neurons, but becomes restricted to the tip of a single process during the establishment of neuronal polarity where it specifies axonal identity. Here, we show that the ubiquitin ligases Smad ubiquitination regulatory factor-1 (Smurf1) and Smurf2 are essential for neurite growth and neuronal polarity, respectively, and regulate the GTPases Rho and Rap1B in hippocampal neurons. Smurf2 is required for the restriction of Rap1B to a single neurite. Smurf2 ubiquitinates inactive Rap1B and initiates its degradation through the ubiquitin/proteasome pathway (UPS). Degradation of Rap1B restricts it to a single neurite and thereby ensures that neurons extend a single axon.  相似文献   

15.
Akt is a member of the AGC kinase family and consists of three isoforms. As one of the major regulators of the class I PI3 kinase pathway, it has a key role in the control of cell metabolism, growth, and survival. Although it has been extensively studied in the nervous system, we have only a faint knowledge of the specific role of each isoform in differentiated neurons. Here, we have used both cortical and hippocampal neuronal cultures to analyse their function. We characterized the expression and function of Akt isoforms, and some of their substrates along different stages of neuronal development using a specific shRNA approach to elucidate the involvement of each isoform in neuron viability, axon development, and cell signalling. Our results suggest that three Akt isoforms show substantial compensation in many processes. However, the disruption of Akt2 and Akt3 significantly reduced neuron viability and axon length. These changes correlated with a tendency to increase in active caspase 3 and a decrease in the phosphorylation of some elements of the mTORC1 pathway. Indeed, the decrease of Akt2 and more evident the inhibition of Akt3 reduced the expression and phosphorylation of S6. All these data indicate that Akt2 and Akt3 specifically regulate some aspects of apoptosis and cell growth in cultured neurons and may contribute to the understanding of mechanisms of neuron death and pathologies that show deregulated growth.  相似文献   

16.
The acquisition of neuronal type-specific morphogenesis is a central feature of neuronal differentiation and has important consequences for region-specific nervous system functions. Here, we report that the cell type-specific cholesterol profile determines the differential modulation of axon and dendrite outgrowths in hippocampal and cerebral cortical neurons in culture. The extent of axon and dendrite outgrowths is greater and the polarity formation occurs earlier in cortical neurons than in hippocampal neurons. The cholesterol concentrations in total homogenate and the lipid rafts from hippocampal neurons are significantly higher than those from cortical neurons. Cholesterol depletion by beta-cyclodextrin markedly enhanced the neurite outgrowth and accelerated the establishment of neuronal polarity in hippocampal neurons, which were similarly observed in nontreated cortical neurons, whereas cholesterol loading had no effects. In contrast, both depletion and loading of cholesterol decreased the neurite outgrowths in cortical neurons. The stimulation of neurite outgrowth and polarity formation induced by cholesterol depletion was accompanied by an enhanced localization of Fyn, a Src kinase, in the lipid rafts of hippocampal neurons. A concomitant treatment with beta-cyclodextrin and a Src family kinase inhibitor, PP2, specifically blocked axon outgrowth but not dendrite outgrowth (both of which were enhanced by beta-cyclodextrin) in hippocampal neurons, suggesting that axon outgrowth modulated by cholesterol is induced in a Fyn-dependent manner. These results suggest that cellular cholesterol modulates axon and dendrite outgrowths and neuronal polarization under culture conditions and also that the difference in cholesterol profile between hippocampal and cortical neurons underlies the difference in neurite outgrowth between these two types of neurons.  相似文献   

17.
Neurons are compartmentalized into two morphologically, molecularly, and functionally distinct domains: axons and dendrites, and precise targeting and localization of proteins within these domains are critical for proper neuronal functions. It has been reported that several members of the Rab family small GTPases that are key mediators of membrane trafficking, regulate axon-specific trafficking events, but little has been elucidated regarding the molecular mechanisms that underlie dendrite-specific membrane trafficking. Here we show that Rab17 regulates dendritic morphogenesis and postsynaptic development in mouse hippocampal neurons. Rab17 is localized at dendritic growth cones, shafts, filopodia, and mature spines, but it is mostly absent in axons. We also found that Rab17 mediates dendrite growth and branching and that it does not regulate axon growth or branching. Moreover, shRNA-mediated knockdown of Rab17 expression resulted in a dramatically reduced number of dendritic spines, probably because of impaired filopodia formation. These findings have revealed the first molecular link between membrane trafficking and dendritogenesis.  相似文献   

18.
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intra-cellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes over-lapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.  相似文献   

19.
C3 ADP-ribosyltransferase is a valuable tool to study Rho-dependent cellular processes. In the current study we investigated the impact of enzyme-deficient peptides derived from Clostridium botulinum C3 transferase in the context of neuronal process elongation and branching, synaptic connectivity, and putative beneficial effects on functional outcome following traumatic injury to the CNS. By screening a range of peptidic fragments, we identified three short peptides from C3bot that promoted axon and dendrite outgrowth in cultivated hippocampal neurons. Furthermore, one of these fragments, a 26-amino acid peptide covering the residues 156-181 enhanced synaptic connectivity in primary hippocampal culture. This peptide was also effective to foster axon outgrowth and re-innervation in organotypical brain slice culture. To evaluate the potential of the 26mer to foster repair mechanisms after CNS injury we applied this peptide to mice subjected to spinal cord injury by either compression impact or hemisection. A single local administration at the site of the lesion improved locomotor recovery. In addition, histological analysis revealed an increased serotonergic input to lumbar motoneurons in treated compared with control mice. Pull-down assays showed that lesion-induced up-regulation of RhoA activity within the spinal cord was largely blocked by C3bot peptides despite the lack of enzymatic activity.  相似文献   

20.
Hippocampal and cortical neurons have been used extensively to study central nervous system (CNS) neuronal polarization, axon/dendrite outgrowth, and synapse formation and function. An advantage of culturing these neurons is that they readily polarize, forming distinctive axons and dendrites, on a two dimensional substrate at very low densities. This property has made them extremely useful for determining many aspects of neuronal development. Furthermore, by providing glial conditioning for these neurons they will continue to develop, forming functional synaptic connections and surviving for several months in culture. In this protocol we outline a technique to dissect, culture and transfect embryonic mouse hippocampal and cortical neurons. Transfection is accomplished by electroporating DNA into the neurons before plating via nucleofection. This protocol has the advantage of expressing fluorescently-tagged fusion proteins early in development (~4-8hrs after plating) to study the dynamics and function of proteins during polarization, axon outgrowth and branching. We have also discovered that this single transfection before plating maintains fluorescently-tagged fusion protein expression at levels appropriate for imaging throughout the lifetime of the neuron (> 2 months in culture). Thus, this methodology is useful for studying protein localization and function throughout CNS development with little or no disruption of neuronal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号