首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 ± 0.3 s, mean ± SEM) were shorter than field observations, although a few breath-holds of over 40 s were recorded. The mean percentage time spent submerged was 89 ± 0.4%. Relative to similarly-sized terrestrial mammals, the respiratory frequency was low (4.9 ± 0.19 breaths · min−1) but with high tidal volumes (1.1 ± 0.01 l), enabling a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 ± 13.8 ml O2 · min−1) was 1.9-fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min. The peak end-tidal O2 values were related to the length of the previous breath-hold, demonstrating the increased oxygen uptake from the lung for the longer dives. Blood oxygen capacity was 23.5 ± 1.0 ml · 100 ml−1, and the oxygen affinity was high, enabling rapid oxygen loading during ventilation. Accepted: 11 August 1999  相似文献   

3.
ABSTRACT

The preference for coastal habitats makes the harbour porpoise, Phocoena phocoena, vulnerable to fisheries conflicts and hence prone to die due to entangling in fishing nets. An opportunistic sampling of such casualties (134 individuals) in Norwegian waters was used to assess the genetic population structure of the species by SNP-genotyping at 78 loci. The results of genetic clustering obtained for these individuals failed to identify more than one genetic group. Likewise, the individually-based F did not meet an Isolation-by-Distance pattern, thus supporting the conclusion that harbour porpoise in Norway probably belongs to a single genetic group or population.  相似文献   

4.
In the southern North Sea, harbour porpoise occurrence increased in recent years after a phase of low abundances during earlier decades. Only very few studies on porpoise presence in the southern German North Sea exist so far. As anthropogenic activities will strongly increase in this part of the North Sea during the next years it is most important to assess population level effects. This study focuses on the analysis of temporal and spatial trends in porpoise density in this area of recent change. Dedicated aerial line-transect distance sampling surveys were conducted in the southern German North Sea between May 2002 and June 2013 to assess porpoise density and distribution. Statistical inferences on porpoise population trends were made using a Markov Chain Monte Carlo (MCMC) technique. Two approaches were chosen to test for a trend in porpoise density and an additional model focused on the change in density of calves. During 55,820 km of survey effort 4377 porpoises including 140 calves were recorded. A significant effect of increasing spatial aggregation from the lower density areas in the south-eastern German Bight to hot spot areas in the western parts was detected. For the western part of the study area a significant increase in porpoise density between 2002 and 2013 was detected. Seasons were significantly different with highest porpoise density in spring and successively decreasing densities in summer and autumn. From 2008 onwards high densities were also observed in summer. Calf density increased during the study period and was significantly higher in the west. On the basis of this extensive and unique data set on porpoise occurrence in the southern German North Sea the findings clearly show that especially the south-western German North Sea serves as habitat of increasing importance for porpoises throughout the last decade. Definite reasons still remain unresolved. Changes in prey abundance or less favourable conditions in other areas could be important factors, which may also have caused a southward shift from high density areas in northern waters. On this baseline, further integrative approaches might lead to a sound understanding of the effect of anthropogenic activities on the future development of porpoise populations.  相似文献   

5.
Fatty acid composition of blubber was determined at four body sites of 19 male harbour porpoises. A total of 65 fatty acids were quantified in each sample. The array of fatty acids contained in harbour porpoise blubber was similar to those found in other marine mammals. While chemical composition of total blubber was uniform over the body, with the exception of the caudal peduncle, vertical stratification was evident between the deep (inner) and superficial (outer) blubber layers. Fatty acids with chain lengths shorter than 18 carbons were present in significantly greater amounts in the outer blubber layer, while the longer-chain unsaturated fatty acids were more prevalent in the inner layer. This distribution suggests that the inner blubber layer is more active metabolically than the outer layer in terms of lipid deposition and mobilization. The degree of stratification between the two layers appears to increase with age, indicating a predictable turnover in the blubber layer of male porpoises. Harbour porpoise blubber contained high levels (2–27%) of isovaleric acid in the outer blubber layer, and these levels were positively correlated with age.Abbreviations Caud caudal dorsal body site - GC gas chromatograph - FA fatty acid(s) - IUPAC International Union of Pure and Applied Chemistry - PUFA polyunsaturated fatty acid(s) - II dor II dorsal body site - III dor III Dorsal body site - II Ven II ventral body site  相似文献   

6.
Muscle, liver, kidney and skin samples taken from 78 harbour porpoises (Phocoena phocoena) were analysed for mercury, cadmium, zinc, copper and selenium. The highest concentrations of mercury were found in the liver (geometric mean 4.17 g/g wet weight), whilst the highest concentrations of cadmium were in the kidney (g.m. 13.2 g/g ww). The levels of cadmium were more than ten times higher than in harbour porpoises from the North Sea and the British NW coast, whilst the mercury levels were about the same. The importance of the cadmium content in the prey is discussed, but this attempt did not revealed the differences. Very high levels of zinc (g.m. 359 g/g ww) and selenium (g.m. 28.6 g/g ww) were found in skin samples, respectively seven and ten times more than in liver. A significant correlation was found between age and the level of mercury and cadmium in all organs. The concentration of mercury and selenium in liver and skin samples and of cadmium and zinc in kidney samples were highly correlated.  相似文献   

7.
8.
Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid‐20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011–April 2013, calibrating the loggers’ spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71–1105 individuals (95% CI, point estimate 491) during May–October within the population''s proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design‐based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.  相似文献   

9.
Epiphyseal development was investigated on X‐rays of flippers from 158 harbour porpoises from Danish waters. Development followed a proximodistal pattern similar to what is known in other cetacean species. Ossification of epiphyses was rare in the phalanges of the first and fifth digits and in the more distal phalanges of the second, third and fourth digits. Along with the morphology of the first metacarpal and the more distal phalanges this suggested paedomorphosis relative to delphinids. Male and female porpoises showed similar progression of epiphyseal development until approximately the sixth year. From then on, female porpoises showed more progressed development than males. This suggests a higher level of paedomorphosis in the male porpoise. The mechanism behind phocoenid paedomorphosis seems to be progenesis, probably as an adaptation towards a high reproductive rate relative to the delphinids.  相似文献   

10.
We examined polymorphism at 12 microsatelliteloci in 807 harbour porpoises , Phocoenaphocoena, collected from throughout thecentral and eastern North Atlantic to theBaltic Sea. Multilocus tests for allelefrequency differences, assignment tests,population structure estimates (FST) andgenetic distance measures (DLR andDC) all indicate six geneticallydifferentiated populations/sub-populationsafter pooling sub-samples within regions.Harbour porpoises from West Greenland, theNorwegian Westcoast, Ireland, the British NorthSea, the Danish North Sea and the inland watersof Denmark (IDW) are all geneticallydistinguishable from each other. A sample ofharbour porpoises collected off the Dutch coast(mainly during winter) was geneticallyheterogeneous and likely comprised a mixture ofindividuals of diverse origin. A mixed stockanalysis indicated that most of the individualsin this sample (77%) were likely migrantsfrom the British and Danish North Sea.  相似文献   

11.
The population status of the harbour porpoise (Phocoena phocoena) in the Baltic area has been a continuous matter of debate. Here we present the by far most comprehensive genetic population structure assessment to date for this region, both with regard to geographic coverage and sample size: 497 porpoise samples from North Sea, Skagerrak, Kattegat, Belt Sea, and Inner Baltic Sea were sequenced at the mitochondrial Control Region and 305 of these specimens were typed at 15 polymorphic microsatellite loci. Samples were stratified according to sample type (stranding vs. by-caught), sex, and season (breeding vs. non-breeding season). Our data provide ample evidence for a population split between the Skagerrak and the Belt Sea, with a transition zone in the Kattegat area. Among other measures, this was particularly visible in significant frequency shifts of the most abundant mitochondrial haplotypes. A particular haplotype almost absent in the North Sea was the most abundant in Belt Sea and Inner Baltic Sea. Microsatellites yielded a similar pattern (i.e., turnover in occurrence of clusters identified by STRUCTURE). Moreover, a highly significant association between microsatellite assignment and unlinked mitochondrial haplotypes further indicates a split between North Sea and Baltic porpoises. For the Inner Baltic Sea, we consistently recovered a small, but significant separation from the Belt Sea population. Despite recent arguments that separation should exceed a predefined threshold before populations shall be managed separately, we argue in favour of precautionary acknowledging the Inner Baltic porpoises as a separate management unit, which should receive particular attention, as it is threatened by various factors, in particular local fishery measures.  相似文献   

12.
Despite no obvious barriers to gene flow in the marine realm, environmental variation and ecological specializations can lead to genetic differentiation in highly mobile predators. Here, we investigated the genetic structure of the harbour porpoise over the entire species distribution range in western Palearctic waters. Combined analyses of 10 microsatellite loci and a 5085 base‐pair portion of the mitochondrial genome revealed the existence of three ecotypes, equally divergent at the mitochondrial genome, distributed in the Black Sea (BS), the European continental shelf waters, and a previously overlooked ecotype in the upwelling zones of Iberia and Mauritania. Historical demographic inferences using approximate Bayesian computation (ABC) suggest that these ecotypes diverged during the last glacial maximum (c. 23–19 kilo‐years ago, kyrbp ). ABC supports the hypothesis that the BS and upwelling ecotypes share a more recent common ancestor (c. 14 kyrbp ) than either does with the European continental shelf ecotype (c. 28 kyrbp ), suggesting they probably descended from the extinct populations that once inhabited the Mediterranean during the glacial and post‐glacial period. We showed that the two Atlantic ecotypes established a narrow admixture zone in the Bay of Biscay during the last millennium, with highly asymmetric gene flow. This study highlights the impacts that climate change may have on the distribution and speciation process in pelagic predators and shows that allopatric divergence can occur in these highly mobile species and be a source of genetic diversity.  相似文献   

13.
Mammalian body condition is an important individual fitness metric as it affects both survival and reproductive success. The ability to accurately measure condition has key implications for predicting individual and population health, and therefore monitoring the population‐level effects of changing environments. No consensus currently exists on the best measure to quantitatively estimate body condition in many species, including cetaceans. Here, two measures of body condition were investigated in the harbor porpoise (Phocoena phocoena). First, the most informative morphometric body condition index was identified. The mass/length2 ratio was the most appropriate morphometric index of 10 indices tested, explaining 50% of the variation in condition in stranded, male porpoises with different causes of death and across age classes (n = 291). Mass/length2 was then used to evaluate a second measure, blubber cortisol concentration, as a metabolic condition marker. Cortisol is the main glucocorticoid hormone involved in the regulation of lipolysis and overall energy balance in mammals, and concentrations could provide information on physiological state. Blubber cortisol concentrations did not significantly vary around the girth (n = 20), but there was significant vertical stratification through the blubber depth with highest concentrations in the innermost layer. Concentrations in the dorsal, outermost layer were representative of concentrations through the full blubber depth, showed variation by sex and age class, and were negatively correlated with mass/length2. Using this species as a model for live cetaceans from which standard morphometric measurements cannot be taken, but from which blubber biopsy samples are routinely collected, cortisol concentrations in the dorsal, outermost blubber layer could potentially be used as a biomarker of condition in free‐ranging animals.  相似文献   

14.
Serial sections of 13 embryos and fetuses of the harbor porpoise from 10 mm crown-rump length up to 167 mm total length were studied. Unlike the adult animals, ontogenetic stages of 18–27 mm crown-rump length still show a typical mammalian olfactory bulb. The olfactory bulb primordium is penetrated by olfactory nerve fibers, the latter passing through the cribriform plate. However, the olfactory bulb anlage is gradually reduced in later stages, its placodal component being largely uncoupled from the telencephalon. As a ganglionlike structure, the remains of the placodal component stay in contact with the nasal septum and mucosa via thin bundles of nerve fibers. The ganglion and plexus can be traced within the meninges until the adult stage of the porpoise. There is strong evidence that they represent the material of the terminalis system, which cannot be distinguished from the olfactory system in earlier stages. A vomeronasal organ could not be detected in the embryonal and fetal material investigated.  相似文献   

15.
With the transition from terrestrial to aquatic habitats, cetacean forelimbs have undergone significant modifications in bone morphology and soft tissue distribution. Some, but not all, of these modifications are also demonstrated in other lineages of extant and extinct secondarily aquatic tetrapods. This study examines the ontogenetic pattern of ossification of the manus of the harbor porpoise (Phocoena phocoena), using plain film radiography. Two modifications examined are hyperphalangy (number of phalanges per digit increased beyond the typical mammalian number) and the morphology of delta-shaped bones. Hyperphalangy in Phocoena phocoena is apparent in digits 2 and 3. Phalangeal counts in all digits are variable (sometimes between the right and left flippers of the same individual) and are not necessarily correlated with age. Phalangeal ossification and epiphyseal fusion proceeds along the proximo-distal axis within each digit. In addition, digits 2 and 3 are at a more advanced stage of ossification than more abaxial digits. Delta-shaped bones appear to be a normal stage in the ossification of phalanges in all digits except the third, and may persist in the adult in certain digits. In humans, this morphology is a developmental anomaly usually associated with other malformations, such as polydactyly or syndactyly. Delta-shaped bones in the cetacean manus display a consistent orientation and the process by which they are formed may be similar to that in extinct marine reptiles.  相似文献   

16.
17.
The harbour porpoise (Phocoena phocoena)experiences high rates of incidental mortalityin commercial fisheries, and in some areasthese rates are sufficiently high to justifyconcern over population sustainability. Giventhe high incidental mortality, the resolutionof population structure will be important toconservation and management, but in the NorthAtlantic the relationships among many of theputative populations remain unclear. Aprevious genetic study demonstrated substantialgenetic differences between eastern and westernNorth Atlantic populations, however thelocation of this break remained unresolved. Inthe present study, we addressed this issue byincluding new samples from Iceland. Toinvestigate population structure, variation inthe mitochondrial DNA of 370 porpoises wascompared among six locations corresponding toseveral of the putative populations (Gulf ofMaine, Gulf of St. Lawrence, Newfoundland, WestGreenland, Iceland, Norway). The first 342base pairs of the control region were sequencedand genetic variation investigated by analysisof molecular variance (F ST and ST ) and 2 withpermutation. Although some fine scalepopulation structure was detected, porpoisesfrom Iceland were found to be more similar tothe western populations (W. Greenland, Gulf ofSt. Lawrence, Newfoundland, Gulf of Maine) thanto Norway. Furthermore, porpoises from Norwaywere different from all other regions. Thesepatterns suggest the existence of adiscontinuity between Iceland and Norway,possibly the result of isolating events causedby repeated range contractions and expansionsthroughout Quaternary glaciation events withinthe North Atlantic. These results suggest thatharbour porpoise populations within the NorthAtlantic are distinguishable, but patterns mustbe interpreted in light of their historicalbiogeography.  相似文献   

18.
19.
20.
Detailed information on year-round distribution, seasonal abundance and inter-annual trends of a given species is essential for any conservation effort. However, for most odontocetes this knowledge is rather limited. Therefore, area-specific management or conservation plans are often difficult to argue for. This is also true for the harbour porpoise (Phocoena phocoena), although it is the most common cetacean species in the North Sea. Knowledge of the current status of local stocks as well as fine scale information on the temporal use of certain areas by the species is incomplete. One area of concern is the southern North Sea where the abundance of harbour porpoises has declined in the twentieth century. Recent studies using stranding data and observations from seabird surveys indicate a comeback of the species along the Dutch and Belgian coast. However, data on other regions of the southern North Sea is sparse. Between 2002 and 2004, we undertook 25 aerial line transect surveys (11,000 km on effort; altitude = 250 and 600 ft) in a 2,500 km2 coastal area off Eastern Frisia, Germany including a small portion of Dutch coastal waters. The data were g(0) corrected using a double platform approach and analysed with distance sampling software. A total of 426 harbour porpoises were sighted, including eight calves. Densities ranged between <0.1 and 1.62 individuals/km2 with peaks in February and July 2003 as well as February and May 2004. The results of our study show that harbour porpoises are present in the coastal part of the southern North Sea even during their reproductive period. However, they seem to appear in lower numbers and much more irregular than in other areas, for example off Northern Frisia. The results of this study support the recent findings that despite a decline in the mid-twentieth century, harbour porpoises are now at times quite abundant in the southern North Sea. The underlying factors of this ‘return’ should be investigated using a combination of surveys and satellite telemetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号