首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell‐secreted ECMs have become of interest as they reproduce tissue‐architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast‐derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast‐differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non‐ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast‐differentiating MSCs with Activin‐A. Extracellular proteins were upregulated in Activin‐A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC‐secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality.  相似文献   

2.
Relatively little is known about the cellular and molecular mechanisms underlying the control of mesenchymal stem cell (MSC) proliferation, differentiation, and survival. This presents difficulties in following and characterizing cells along the lineage because of our inability to isolate and obtain a sufficient number of homogeneous MSCs using current culture systems for in vitro expansion. Adjusting the cellular machinery to allow greater proliferation can lead to other unwanted outcomes, such as unmanageable precancerous changes, or differentiation down an undesired pathway. Recently, it has become increasingly evident that the extracellular matrix (ECM) is an important component of the cellular niche in a tissue, supplying critical biochemical and physical signals to initiate and sustain cellular functions. Indeed, it is very doubtful that the intricate and highly ordered nature of the ECM could be reproduced with synthetic or purified components. This review cites evidence that supports an alternative approach for maintenance of MSCs by simulating in vitro the bone marrow ECM, where MSCs reside in vivo, and discusses the potential mechanisms whereby the ECM regulates the exposure of cells to growth factors that subsequently control MSC replication and differentiation, and also how the ECM provides unique cues that govern the lineage specification and differentiation of MSCs. Birth Defects Research (Part C) 90:45–54, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Bone marrow mesenchymal stem cells (MSCs) are candidate cells for cartilage tissue engineering. This is due to their ability to undergo chondrogenic differentiation after extensive expansion in vitro and stimulation with various biomaterials in three-dimensional (3-D) systems. Collagen type II is one of the major components of the hyaline cartilage and plays a key role in maintaining chondrocyte function. This study aimed at analyzing the MSC chondrogenic response during culture in different types of extracellular matrix (ECM) with a focus on the influence of collagen type II on MSC chondrogenesis. Bovine MSCs were cultured in monolayer as well as in alginate and collagen type I and II hydrogels, in both serum free medium and medium supplemented with transforming growth factor (TGF) beta1. Chondrogenic differentiation was detected after 3 days of culture in 3-D hydrogels, by examining the presence of glycosaminoglycan and newly synthesized collagen type II in the ECM. Differentiation was most prominent in cells cultured in collagen type II hydrogel, and it increased in a time-dependent manner. The expression levels of the of chondrocyte specific genes: sox9, collagen type II, aggrecan, and COMP were measured by quantitative "Real Time" RT-PCR, and genes distribution in the hydrogel beads were localized by in situ hybridization. All genes were upregulated by the presence of collagen, particularly type II, in the ECM. Additionally, the chondrogenic influence of TGF beta1 on MSCs cultured in collagen-incorporated ECM was analyzed. TGF beta1 and dexamethasone treatment in the presence of collagen type II provided more favorable conditions for expression of the chondrogenic phenotype. In this study, we demonstrated that collagen type II alone has the potential to induce and maintain MSC chondrogenesis, and prior interaction with TGF beta1 to enhance the differentiation.  相似文献   

4.
Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome‐ECM interactions is limited. Here, we investigate whether the exosome‐associated lysyl oxidase family member lysyl oxidase‐like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)‐derived exosomes, placing it in direct vicinity of the ECM. It is up‐regulated twofold in EC‐derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome‐producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC‐derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia‐regulated focal ECM remodelling, a key process in both fibrosis and wound healing.  相似文献   

5.
6.
7.
Chemical and mechanical stimulation, when properly utilized, positively influence both the differentiation of in vitro cultured stem cells and the quality of the deposited extracellular matrix (ECM). This study aimed to find if cell‐free extract from primary tenocytes can positively affect the development of a tissue‐engineered tendon construct, consisting of a human umbilical vein (HUV) seeded with mesenchymal stem cells (MSCs) subjected to cyclical mechanical stimulation. The tenocytic cell‐free extract possesses biological material from tendon cells that could potentially influence MSC tenocytic differentiation and construct development. We demonstrate that the addition of tenocytic extract in statically cultured tendon constructs increases ECM deposition and tendon‐related gene expression of MSCs. The incorporation of mechanical stimulation (2% strain for 30 min/day at 0.5 cycles/min) with tenocytic extract further improved the MSC seeded HUV constructs by increasing cellularity of the construct by 37% and the ultimate tensile strength by 33% compared to the constructs with only mechanical stimulation after 14 days. Furthermore, the addition of mechanical stimulation to the extract supplementation produced longitudinal ECM fibril alignment along with dense connective tissue, reminiscent of natural tendon.  相似文献   

8.
9.
新近研究表叽细胞外基质(extracellularmatrix,ECM)的物理性质,特别是硬度或弹性,能对细胞的黏附、铺展、迁移、增殖、分化和凋亡等多种功能和行为产生重要影响。间充质干细胞(mesenchymalstemcells,MSCs)是组织工程和细胞治疗的理想种子细胞。ECM硬度可诱导MSCs向脂肪、软骨、神经、肌肉和骨等方向分化。该文综合论述了ECM硬度对干细胞分化的影响,涵盖了构建ECM硬度的测量、调控与表征等,不同培养条件下干细胞对硬度的响应和分化以及硬度和其他因素的联合作用;在此基础上,进一步论述了干细胞分化过程中细胞感应ECM硬度并转化为生物学信号的机制和信号通路。该文还总结了在ECM硬度调控干细胞分化行为领域最新的研究进展情况,较为系统地分析了材料学、细胞生物学、分子生物学水平的主要影响因素,并对本领域未来需要重点研究的问题进行了展望。  相似文献   

10.
The roles of various soluble factors in promoting the osteogenic differentiation of adult mesenchymal stem cells (MSCs) have been widely studied, but little is known about how the extracellular matrix (ECM) instructs the phenotypic transition between growth and differentiation. To investigate this question, we cultured MSCs on purified vitronectin or type-I collagen, motivated by our earlier tissue engineering work demonstrating that MSC adhesion to polymer scaffolds is primarily mediated by the passive adsorption of these two ECM ligands from serum. Using alkaline phosphatase activity and matrix mineralization as indicators of the early and late stages of osteogenesis, respectively, we report here that both substrates supported differentiation, but the mechanism was substrate dependent. Specifically, osteogenesis on vitronectin correlated with enhanced focal adhesion formation, the activation of focal adhesion kinase (FAK) and paxillin, and the diminished activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3 kinase (PI3K) pathways. By contrast, MSCs on type-I collagen exhibited reduced focal adhesion formation, reduced activation of FAK and paxillin, and increased activation of ERK and PI3K. Inhibition of ERK and FAK blocked mineral deposition on both substrates, suggesting that the observed differences in signaling pathways ultimately converge to the same cell fate. Understanding these mechanistic differences is essential to predictably control the osteogenic differentiation of MSCs and widen their use in regenerative medicine.  相似文献   

11.
Differentiation of mesenchymal stem cells (MSCs) into anterior cruciate ligament (ACL) cells is regulated by many factors. Mechanical stress affects the healing and remodeling process of ACL after surgery in important ways. Besides, co-culture system had also showed the promise to induce MSCs toward different kinds of cells on current research. The purpose of this study was to investigate the gene expression of ACL cells' major extracellular matrix (ECM) component molecules of MSCs under three induction groups. In addition, to follow our previous study, cell electrophoresis technique and mRNA level gene expression of MSC protein were also used to analyze the differentiation of MSCs. The results reveal that specific regulatory signals which released from ACL cells appear to be responsible for supporting the selective differentiation toward ligament cells in co-culture system and mechanical stress promotes the secretion of key ligament ECM components. Therefore, the combined regulation could assist the development of healing and remolding of ACL tissue engineering. Furthermore, this study also verifies that cell electrophoresis could be used in investigation of cell differentiation. Importantly, analysis of the data suggests the feasibility of utilizing MSCs in clinical applications for repairing or regenerating ACL tissue.  相似文献   

12.
The low engraftment and retention rate of mesenchymal stem cells (MSCs) at the target site indicates that the potential benefits of MSC-based therapies can be attributed to their paracrine signaling. In this study, the extracellular matrices (ECMs) deposited by bone marrow-derived human MSCs in the presence and absence of ascorbic acid was characterized. MSCs were seeded on top of decellularized ECM (dECM) and the concentrations of proangiogenic and antiangiogenic molecules released in culture (conditioned) media was compared. Effects of ECM derived from MSCs with different passage numbers on MSC secretome was also investigated. Our study revealed that the expression of proangiogenesis-related factors were upregulated when MSCs were harvested on dECMs, irrespective of media supplementation, as compared with those cultured on tissue culture plates. In addition, dECM generated in the presence of ascorbic acid promoted the expression of proangiogenic molecules as compared with dECM-derived in absence of media supplementation. Further, it was observed that the effectiveness of dECM to stimulate proangiogenic signaling of MSCs was reduced as cell passage number was increased from P3 to P5. The proliferation as well as capillary morphogenesis of human umbilical vein endothelial cells (HUVECs) in the presence of conditioned media were enhanced compared with the normal HUVECs culture media. These data indicate that the secretory signatures of MSCs and consequently, the therapeutic efficacy of MSCs can be regulated by presentation of dECM composition and variation of its composition.  相似文献   

13.
Tightly associated with blood vessels in their perivascular niche, human mesenchymal stem cells (MSCs) closely interact with endothelial cells (ECs). MSCs also home to tumours and interact with cancer cells (CCs). Microparticles (MPs) are cell‐derived vesicles released into the extracellular environment along with secreted factors. MPs are capable of intercellular signalling and, as biomolecular shuttles, transfer proteins and RNA from one cell to another. Here, we characterize interactions among ECs, CCs and MSCs via MPs and secreted factors in vitro. MPs and non‐MP secreted factors (Sup) were isolated from serum‐free medium conditioned by human microvascular ECs (HMEC‐1) or by the CC line HT1080. Fluorescently labelled MPs were prepared from cells treated with membrane dyes, and cytosolic GFP‐containing MPs were isolated from cells transduced with CMV‐GFP lentivirus. MSCs were treated with MPs, Sup, or vehicle controls, and analysed for MP uptake, proliferation, migration, activation of intracellular signalling pathways and cytokine release. Fluorescently labelled MPs fused with MSCs, transferring the fluorescent dyes to the MSC surface. GFP was transferred to and retained in MSCs incubated with GFP‐MPs, but not free GFP. Thus, only MP‐associated cellular proteins were taken up and retained by MSCs, suggesting that MP biomolecules, but not secreted factors, are shuttled to MSCs. MP and Sup treatment significantly increased MSC proliferation, migration, and MMP‐1, MMP‐3, CCL‐2/MCP‐1 and IL‐6 secretion compared with vehicle controls. MSCs treated with Sup and MPs also exhibited activated NF‐κB signalling. Taken together, these results suggest that MPs act to regulate MSC functions through several mechanisms.  相似文献   

14.
The use of adult mesenchymal stem cells (MSC) in cartilage tissue engineering has been implemented in the field of regenerative medicine and offers new perspectives in the generation of transplants for reconstructive surgery. The extracellular matrix (ECM) plays a key role in modulating function and phenotype of the embedded cells and contains the integrins as adhesion receptors mediating cell-cell and cell-matrix interactions. In our study, characteristic changes in integrin expression during the course of chondrogenic differentiation of MSC from bone marrow and foetal cord blood were compared. MSC were isolated from bone marrow biopsies and cord blood. During cell culture, chondrogenic differentiation was performed. The expression of integrins and their signalling components were analysed with microarray and immunohistochemistry in freshly isolated MSC and after chondrogenic differentiation. The fibronectin-receptor (integrin a5b1) was expressed by undifferentiated MSC, expression rose during chondrogenic differentiation in both types of MSC. The components of the vitronectin/osteopontin-receptors (avb5) were not expressed by freshly isolated MSC, expression rose with ongoing differentiation. Receptors for collagens (a1b1, a2b1, a3b1) were weakly expressed by undifferentiated MSC and were activated during differentiation. As intracellular signalling components integrin linked kinase (ILK) and CD47 showed increasing expression with ongoing differentiation. For all integrins, no significant differences could be found in the two types of MSC. Integrin-mediated signalling seems to play an important role in the generation and maintenance of the chondrocytic phenotype during chondrogenic differentiation. Especially the receptors for fibronectin, vitronectin, osteopontin and collagens might be involved in the generation of the ECM. Intracellularly, their signals might be transduced by ILK and CD47. To fully harness the potential of these cells, future studies should be directed to ascertain their cellular and molecular characteristics for optimal identification, isolation and expansion.  相似文献   

15.
To study the influence of smooth muscle cells (SMC) on endothelial cells (EC), different co-culture designs are available, including EC seeding on SMC extracellular matrix (ECM). We explored human umbilical vein endothelial cell (HUVEC) adhesion and proliferation on either in situ or coated ECM, elaborated by HUVECs or human arterial smooth muscle cells (HUASMCs), in the presence of different nutrient media containing varying amounts of fetal calf serum. Coating wells with HUVEC or HUASMC ECMs did not improve HUVEC adhesion 1 h after cell seeding, compared with uncoated wells. HUVEC adhesion on in situ HUVEC-ECM and HUASMC-ECM was significantly increased compared with uncoated wells. The substratum upon which cells are maintained was found to play a crucial role, in conjunction with the medium to which HUVECs are exposed for their proliferative response. These results stress the importance of selecting media in relation to the particular substratum, in order to avoid misinterpretation of data.  相似文献   

16.
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml) or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels. Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation.  相似文献   

17.
Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20–30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB‐MSC‐like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 × 106 cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL‐3, and 5 ng/mL Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Moreover, the UCB‐MSC‐like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens‐DR (HLA‐DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB‐MSCs by adding suitable cytokines into the culture system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts—soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non‐identical by a number of parameters, and that these differences have significant ramifications for their ligand‐binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS‐dependent factors between the ECM and the cell surface. J. Cell. Biochem. 108: 1132–1142, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.  相似文献   

20.
Adult human mesenchymal stem cells (MSCs) hold promise for an increasing list of therapeutic uses due to their ease of isolation, expansion, and multi‐lineage differentiation potential. To maximize the clinical potential of MSCs, the underlying mechanisms by which MSC functionality is controlled must be understood. We have taken a deconstructive approach to understand the individual components in vitro, namely the role of candidate “stemness” genes. Our recent microarray gene expression profiling data suggest that interleukin‐6 (IL‐6) may contribute to the maintenance of MSCs in their undifferentiated state. In this study, we showed that IL‐6 gene expression is significantly higher in undifferentiated MSCs as compared to their chondrogenic, osteogenic, and adipogenic derivatives. Moreover, we found that MSCs secrete copious amounts of IL‐6 protein, which decreases dramatically during osteogenic differentiation. We further evaluated the role of IL‐6 for maintenance of MSC “stemness,” using a series of functional assays. The data showed that IL‐6 is both necessary and sufficient for enhanced MSC proliferation, protects MSCs from apoptosis, inhibits adipogenic and chondrogenic differentiation of MSCs, and increases the rate of in vitro wound healing of MSCs. We further identified ERK1/2 activation as the key pathway through which IL‐6 regulates both MSC proliferation and inhibition of differentiation. Taken together, these findings show for the first time that IL‐6 maintains the proliferative and undifferentiated state of bone marrow‐derived MSCs, an important parameter for the optimization of both in vitro and in vivo manipulation of MSCs. J. Cell. Biochem. 108: 577–588, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号