首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vector‐borne diseases constitute a major global health burden and are increasing in geographic range and prevalence. Mounting evidence has demonstrated that the vector microbiome can impact pathogen dynamics, making the microbiome a focal point in vector‐borne disease ecology. However, efforts to generalize preliminary findings across studies and systems and translate these findings into disease control strategies are hindered by a lack of fundamental understanding of the processes shaping the vector microbiome and the interactions therein. Here, we use 16S rRNA sequencing and apply a community ecology framework to analyze microbiome community assembly and interactions in Ixodes pacificus, the Lyme disease vector in the western United States. We find that vertical transmission routes drive population‐level patterns in I. pacificus microbial diversity and composition, but that microbial function and overall abundance do not vary over time or between clutches. Further, we find that the I. pacificus microbiome is not strongly structured based on competition but assembles nonrandomly, potentially due to vector‐specific filtering processes which largely eliminate all but the dominant endosymbiont, Rickettsia. At the scale of the individual I. pacificus, we find support for a highly limited internal microbial community, and hypothesize that the tick endosymbiont may be the most important component of the vector microbiome in influencing pathogen dynamics.  相似文献   

2.
The main food source of free‐living nematodes in the soil environment is bacteria, which can affect nematode development, fecundity and survival. In order to occupy a reliable source of bacterial food, some nematodes have formed specific relationships with an array of invertebrate hosts (where bacteria proliferate once the hosts dies), thus forming a tritrophic system of nematode, bacteria and insect or other invertebrates. We isolated 768 Bacillus strains from soil (from Germany and the UK), horse dung and dung beetles and fed them to the genetically tractable free‐living nematodes Caenorhabditis elegans and Pristionchus pacificus to isolate nematocidal strains. While C. elegans is a bacteriovorous soil nematode, P. pacificus is an omnivorous worm that is often found in association with scarab beetles. We found 20 Bacillus strains (consisting of B. cereus, B. weihenstephanensis, B. mycoides and Bacillus sp.) that were pathogenic to C. elegans and P. pacificus causing 70% to 100% mortality over 5 days and significantly affect development and brood size. The most pathogenic strains are three B. cereus‐like strains isolated from dung beetles, which exhibit extreme virulence to C. elegans in less than 24 h, but P. pacificus remains resistant. C. elegans Bre mutants were also highly susceptible to the B. cereus‐like strains indicating that their toxins use a different virulence mechanism than B. thuringiensis Cry 5B toxin. Also, mutations in the daf‐2/daf‐16 insulin signaling pathway do not rescue survival. We profiled the toxin genes (bcet, nhe complex, hbl complex, pcpl, sph, cytK, piplc, hly2, hly3, entFM and entS) of these three B. cereus‐like strains and showed presence of most toxin genes but absence of the hbl complex. Taken together, this study shows that the majority of naturally isolated Bacillus from soil, horse dung and Geotrupes beetles are benign to both C. elegans and P. pacificus. Among 20 pathogenic strains with distinct virulence patterns against the two nematodes, we selected three B. cereus‐like strains to investigate resistance and susceptibility immune responses in nematodes.  相似文献   

3.
Comprehensive studies of evolution have historically been hampered by the division among disciplines. Now, as biology moves towards an ‘‐omics’ era, it is more important than ever to tackle the evolution of function and form by considering all those research areas involved in the regulation of phenotypes. Here, we review recent attempts to establish the nematode Pristionchus pacificus as a model organism that allows integrative studies of development and evo‐devo, with ecology and population genetics. Originally developed for comparative study with the nematode Caenorhabditis elegans, P. pacificus provided insight into developmental pathways including dauer formation, vulva and gonad development, chemosensation, innate immunity and neurobiology. Its subsequent discovery across a wide geographic distribution in association with scarab beetles enabled its evaluation in a biogeographic context. Development of an evolutionary field station on La Réunion Island, where P. pacificus is present in high abundance across a number of widespread habitat types, allows examination of the microfacets of evolution – processes of natural selection, adaptation and drift among populations can now be examined in this island setting. The combination of laboratory‐based functional studies with fieldwork in P. pacificus has the long‐term prospective to provide both proximate (mechanistic) and ultimate (evolutionary and ecological) causation and might therefore help to overcome the long‐term divide between major areas in biology.  相似文献   

4.
Granulocytic anaplasmosis (GA) and Lyme borreliosis are emerging tick‐borne diseases caused by infection with Anaplasma phagocytophilum and Borrelia burgdorferi, respectively, and maintained in rodent‐Ixodes spp. tick cycles, including I. pacificus in the western U.S. Ixodes pacificus has a multiple‐year life cycle and B. burgdorferi and A. phagocytophilum are transstadially, but not transovarially, transmitted within ticks, thus ticks function importantly in maintaining infection in nature. In this study, the survival of larval and nymphal I. pacificus was determined using ticks placed in tubes in leaf litter from June 2005 to September 2006 at two field sites in the California northern coast range mountains and a laboratory control. In all three sites, nymphal and larval survival ranged from 90–400 d, with differences in mean survival among sites. Fewer ticks died in the autumn in the moister field sites compared with the drier incubator control treatment. The first large die‐off event in late autumn occurred at all sites shortly before relative humidity increased from 80–100% and temperature declined from approximately 22–15° C. The concurrent die‐off in the incubator population, subject to relative humidity and temperature regimes that were invariant, suggests that survival time was dependent on other factors in addition to environmental conditions. These results suggested that many ticks exhausted resources or tolerance for relatively low humidity within six months of questing, and that higher humidity prolonged survival. Based on observed longevity, humans and other animals could acquire A. phagocytophilum infection from adult I. pacificus that were infected up to three years earlier.  相似文献   

5.
The western predatory mite, Galendromus occidentalis (Nesbitt) (Acari: Phytoseiidae), is a predator of Pacific spider mite, Tetranychus pacificus McGregor (Acari: Tetranychidae), in California vineyards. We evaluated the effects of six pesticides on biological control of T. pacificus on grape plant microcosms in a two-way design: presence and absence of G. occidentalis crossed with presence and absence of pesticide. The insecticide imidacloprid did not affect T. pacificus population growth rate, but it led G. occidentalis populations close to extinction. As a result, T. pacificus populations grew significantly higher in microcosms with release of G. occidentalis and treated with imidacloprid than with G. occidentalis alone. The fungicide wettable sulfur significantly decreased T. pacificus population growth rate but it did not affect G. occidentalis. Consequently, T. pacificus populations were significantly lower in microcosms with release of G. occidentalis and treated with wettable sulfur than with G. occidentalis alone. The insecticide buprofezin had no effect on T. pacificus population growth rate. Although buprofezin did not impact the ability of G. occidentalis to suppress T. pacificus, it negatively affected G. occidentalis population growth rate. The fungicides trifloxystrobin and tebuconazole and the insecticide methoxyfenozide had no influence on T. pacificus or G. occidentalis population growth rates. Furthermore, none of the pesticides affected the sex ratio of G. occidentalis, but buprofezin, methoxyfenozide and trifloxystrobin affected its stage structure. Our study demonstrates that simultaneous testing of the demographic effects of pesticides on pests and natural enemies is essential for a full assessment of pesticide impacts on biological control.  相似文献   

6.
Characterizing the genetic basis of among‐species variation in lifespan is a major goal of evolutionary gerontology research, but the very feature that defines separate species – the inability to interbreed – makes achieving this goal impractical, if not impossible, for most taxa. Pristionchus nematodes provide an intriguing system for tackling this problem, as female lifespan varies among species that can be crossed to form viable (although infertile) hybrids. By conducting reciprocal crosses among three species – two dioecious (long‐lived Pristionchus exspectatus and short‐lived Pristionchus arcanus) and one androdioecious (short‐lived Pristionchus pacificus) – we found that female lifespan was long for all hybrids, consistent with the hypothesis that the relatively short lifespans seen for P. pacificus hermaphrodites and P. arcanus females are caused by independent, recessive alleles that are masked in hybrid genomes. Cross‐direction had a small effect on survivorship for crosses involving P. exspectatus, indicating that nuclear–mitochondrial interactions may also influence Pristionchus longevity. Our findings suggest that long lifespan in P. exspectatus reflects the realization of an ancestral potential for extended longevity in the P. pacificus species complex. This work demonstrates the utility of interspecific hybrids for ageing research and provides a foundation for future work on the genetic architecture of interspecific lifespan variation.  相似文献   

7.
The hermaphroditic nematode Pristionchus pacificus is a model organism with a range of fully developed genetic tools. The species is globally widespread and highly diverse genetically, consisting of four major independent lineages (lineages A, B, C, and D). Despite its young age (~2.1 Ma), volcanic La Réunion Island harbors all four lineages. Ecological and population genetic research studies suggest that this diversity is due to repeated independent island colonizations by P. pacificus. Here, we use model‐based statistical methods to rigorously test hypotheses regarding the evolutionary history of P. pacificus. First, we employ divergence analyses to date diversification events among the four “world” lineages. Next, we examine demographic properties of a subset of four populations (“a”, “b”, “c”, and “d”), present on La Réunion Island. Finally, we use the results of the divergence and demographic analyses to inform a modeling‐based approximate Bayesian computation (ABC) approach, where we test hypotheses about the order and timing of establishment of the Réunion populations. Our dating estimates place the recent common ancestor of P. pacificus lineages at nearly 500,000 generations past. Our demographic analysis supports recent (<150,000 generations) spatial expansion for the island populations, and our ABC approach supports c>a>b>d as the most likely colonization order of the island populations. Collectively, our study comprehensively improves previous inferences about the evolutionary history of P. pacificus.  相似文献   

8.
In recent years, grape growers in California reported failures of acaricides against Tetranychus pacificus McGregor. We collected T. pacificus populations from four vineyards and tested them for resistance to bifenazate, propargite and pyridaben. In addition, we sequenced part of the cytochrome b gene of bifenazate-resistant and -susceptible T. pacificus to test for the presence of mutations reported to confer resistance to the congeneric T. urticae. None of the mutations conferring resistance to bifenazate in T. urticae were present in resistant T. pacificus. Resistance levels ranged from full susceptibility to statistically significant 11-fold resistance to pyridaben, sevenfold resistance to bifenazate and fourfold resistance to propargite compared to a susceptible population. Despite the relatively low levels of resistance detected, we estimated that under the conditions of our study the highest field rates of bifenazate and pyridaben application would cause less than 58 and 66% mortality of adult females in the most resistant populations, respectively. In contrast, field rates of propargite application would cause close to 100% mortality in the least susceptible population. These results highlight a potential link between resistance development and reduced field effectiveness for bifenazate and pyridaben. Finally, T. pacificus may be more tolerant to bifenazate and propargite than T. urticae, since the LC50 values for the susceptible population of T. pacificus were several times higher than LC50’s reported for susceptible T. urticae.  相似文献   

9.
All organisms must interact with their environment, responding in behavioral, chemical, and other ways to various stimuli throughout their life cycles. Characterizing traits that directly represent an organism's ability to sense and react to their environment provides useful insight into the evolution of life‐history strategies. One such trait for the nematode Pristionchus pacificus, chemosensation, is involved in navigation to beetle hosts. Essential for the survival of the nematode, chemosensory behavior may be subject to variation as nematodes discriminate among chemical cues to complete their life cycle. We examine this hypothesis using natural isolates of P. pacificus from La Réunion Island. We select strains from a variety of La Réunion beetle hosts and geographic locations and examine their chemoattraction response toward organic compounds, beetle washes, and live beetles. We find that nematodes show significant differences in their response to various chemicals and are able to chemotax to live beetles in a novel assay. Further, strains can discriminate among different cues, showing more similar responses toward beetle washes than to organic compounds in cluster analyses. However, we find that variance in chemoattraction response is not significantly associated with temperature, location, or beetle host. Rather, strains show a more concerted response toward compounds they most likely directly encounter in the wild. We suggest that divergence in odor‐guided behavior in P. pacificus may therefore have an important ecological component.  相似文献   

10.
Pristionchus pacificus, recently established as a model organism in evolutionary biology, is a cosmopolitan nematode that has a necromenic association with scarab beetles. The diverse array of host beetle species and habitat types occupied by P. pacificus make it a good model for investigating local adaptation to novel environments. Presence of P. pacificus on La Réunion Island, a young volcanic island with a dynamic geological history and a wide variety of ecozones, facilitates such investigation in an island biogeographic setting. Microsatellite data from 20 markers and 223 strains and mitochondrial sequence data from 272 strains reveal rich genetic diversity among La Réunion P. pacificus isolates, shaped by differentially timed introductions from diverse sources and in association with different beetle species. Distinctions between volcanic zones and between arid western and wet eastern climatic zones have likely limited westward dispersal of recently colonized lineages and maintained a genetic distinction between eastern and western clades. The highly selfing lifestyle of P. pacificus contributes to the strong fine‐scale population structure detected, with each beetle host harbouring strongly differentiated assemblages of strains. Periodic out‐crossing generates admixture between genetically diverse lineages, creating a diverse array of allelic combinations likely to increase the evolutionary potential of the species and facilitate adaptation to local environments and beetle hosts.  相似文献   

11.
Mahogunin Ring Finger‐1 (Mgrn1) null mutant mice have a pleiotropic phenotype that includes the absence of yellow hair pigment, abnormal head shape, reduced viability, and adult‐onset spongiform neurodegeneration. Mgrn1 encodes a highly conserved E3 ubiquitin ligase with four different isoforms which are differentially expressed and predicted to localize to different subcellular compartments. To test whether loss of specific isoforms causes different aspects of the mutant phenotype, we generated transgenes for each isoform and bred them onto the null mutant background. Mice expressing only isoform I or III appeared completely normal. Isoform II rescued or partially rescued the mutant phenotypes, whereas isoform IV had little or no effect. Our data show that different Mgrn1 isoforms are not functionally equivalent in vivo and that the presence of only isoform I or III is sufficient for normal development, pigmentation, and neuronal integrity. genesis 47:524–534, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Polyphenism is an extreme manifestation of developmental plasticity, requiring distinct developmental programs and the addition of a switch mechanism. Because the genetic basis of polyphenism switches has only begun to be understood, how their mechanisms arise is unclear. In the nematode Pristionchus pacificus, which has a mouthpart polyphenism specialized for alternative diets, a gene (eud‐1) executing the polyphenism switch was recently identified as the product of lineage‐specific duplications. Here, we infer the role of gene duplications in producing a switch gene. Using reverse genetics and population genetic analyses, we examine evidence for competing scenarios of degeneration and complementation, neutral evolution, and functional specialization. Of the daughter genes, eud‐1 alone has assumed switch‐like regulation of the mouth polyphenism. Measurements of life‐history traits in single, double, and triple sulfatase mutants did not, given a benign environment, identify alternative or complementary roles for eud‐1 paralogs. Although possible roles are still unknown, selection analyses of the sister species and 104 natural isolates of P. pacificus detected purifying selection on the genes, suggesting their functionality by their fixation and evolutionary maintenance. Our approach shows the tractability of reverse genetics in a nontraditional model system to study evolution by gene duplication.  相似文献   

13.
Vector‐borne pathogens are increasingly found to interact with the vector's microbiome, influencing disease transmission dynamics. However, the processes that regulate the formation and development of the microbiome are largely unexplored for most tick species, an emerging group of disease vectors. It is not known how much of the tick microbiome is acquired through vertical transmission vs. horizontally from the environment or interactions with bloodmeal sources. Using 16S rRNA sequencing, we examined the microbiome of Ixodes pacificus, the vector of Lyme disease in the western USA, across life stages and infection status. We also characterized microbiome diversity in field and laboratory‐collected nymphal ticks to determine how the surrounding environment affects microbiome diversity. We found a decrease in both species richness and evenness as the tick matures from larva to adult. When the dominant Rickettsial endosymbiont was computationally removed from the tick microbial community, we found that infected nymphs had lower species evenness than uninfected ticks, suggesting that lower microbiome diversity is associated with pathogen transmission in wild‐type ticks. Furthermore, laboratory‐reared nymph microbiome diversity was found to be compositionally distinct and significantly depauperate relative to field‐collected nymphs. These results highlight unique patterns in the microbial community of I. pacificus that is distinct from other tick species. We provide strong evidence that ticks acquire a significant portion of their microbiome through exposure to their environment despite a loss of overall diversity through life stages. We provide evidence that loss of microbial diversity is at least in part due to elimination of microbial diversity with bloodmeal feeding but other factors may also play a role.  相似文献   

14.
Herein, we use genetic data from 277 sleeper sharks to perform coalescent‐based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic‐Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub‐Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial‐interglacial cycles. We propose that the initial S. microcephalusS. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale.  相似文献   

15.
Pristionchus pacificus has been established as a nematode model system in evolutionary developmental biology and evolutionary ecology. Field studies in North and South America, Asia, Africa and Europe indicated that nematodes of the genus Pristionchus live in association with scarab beetles. Here, we describe the first account of soil‐ and beetle‐associated nematodes on an island setting by investigating the island of Réunion in the Indian Ocean. Réunion has high numbers of endemic insects and is one among several attractive islands for biodiversity studies. Being of volcanic origin, Réunion is 2–3 million years old, making it the youngest of the Mascareigne islands. We show that beetle‐ and soil‐derived nematodes on Réunion are nearly exclusively hermaphroditic, suggesting that selfing is favoured over gonochorism (outcrossing) during island colonization. Among members of four nematode genera observed on Réunion, Pristionchus pacificus was the most prevalent species. A total of 76 isolates, in association with five different scarab beetles, has been obtained for this cosmopolitan nematode. A detailed mitochondrial haplotype analysis indicates that the Réunion isolates of P. pacificus cover all four worldwide clades of the species. This extraordinary haplotype diversity suggests multiple independent invasions, most likely in association with different scarab beetles. Together, we establish Réunion as a case study for nematode island biogeography, in which the analysis of nematode population genetics and population dynamics can provide insight into evolutionary and ecological processes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 170–179.  相似文献   

16.
Numerous delphacid planthopper species are major pests of economically important and widely cultivated crops (i.e. rice, corn, and sugarcane). These insects have the potential to become serious crop pests in areas where they have either naturally migrated or been newly introduced. The white-bellied planthopper, Stenocranus pacificus Kirkaldy, 1907, originally known from tropical South Pacific islands, appeared in tropical and subtropical Asia in the early years of the 21st century. Since then, Spacificus has become a serious pest of corn in some Southeast Asian countries, although it also feeds on rice, sugarcane, sorghum, and other grasses. Here, we report the presence of Spacificus in mainland Japan, representing the first record of this species in temperate Asia. Seven male and 17 female adult individuals collected in Kumamoto Prefecture in 2019 and 2020 were identified as Spacificus based on their morphological characteristics and mitochondrial COI sequences. In addition, molecular phylogenetic analysis showed that Spacificus formed a distinct clade from other Stenocranus species, indicating uncertainty in its generic assignment. Although crop damage by Spacificus has not yet been reported from temperate regions, given its wide range of plant hosts and the potential for future range expansions, damaged crops in Asia, including in temperate regions, should be monitored for the presence of this species.  相似文献   

17.
Lizards and mammals were trapped and examined for ticks from August 1992 to June 1993 in two habitat types, chaparral and woodland-grass, in northern California. Five tick species were collected from mammals (Dermacentor occidentalis, Haemaphysalis leporispalustris, Ixodes pacificus, I. spinipalpis, I. woodi), but only I. pacificus was found on lizards. Dermacentor occidentalis, I. pacificus, and I. woodi occurred in both habitats, whereas H. leporispalustris and I. spinipalpis were found only on animals trapped in chaparral. The tick species most commonly encountered on mammals was D. occidentalis in chaparral and I. pacificus in woodland-grass. Peak infestation of mammals occurred in spring for I. pacificus immatures and H. leporispalustris, summer for D. occidentalis immatures, fall through spring for I. woodi immatures, and fall through winter for I. spinipalpis. The primary aim of the study was to quantify the relative importance of the western fence lizard (Sceloporus occidentalis), which is reservoir-incompetent for Borrelia burgdorferi sensu lato (s.l.), and mammalian B.burgdorferi s.l.-reservoirs as hosts for the immature stages of I. pacificus in spring. The estimated relative utilization by I. pacificus of the western fence lizard versus mammals was 88% for larvae and 99% for nymphs in chaparral in May. When tick infestation data were corrected for a two-fold lower efficiency of field examinations for rodents than for lizards, the western fence lizard still accounted for 78% of larval and 98% of nymphal feedings. In woodland-grass, 46% of 100 I. pacificus larvae and 100% of 52 nymphs recovered from mammals or western fence lizards during May-June were collected from the lizards. However, this may represent an underestimate of the importance of the western fence lizard as a larval host in this habitat because inclement weather during the late May sampling period doubtless resulted in significantly decreased lizard activity. In conclusion, the western fence lizard was more heavily utilized by I. pacificus immatures, especially nymphs, than were rodents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Abstract In western North America, the tick Ixodes pacificus Cooley & Kohls (Acari: Ixodidae) is the primary vector to humans and domestic animals of the disease agents causing Lyme disease and granulocytic ehrlichiosis. We examined the seasonal activity patterns of I. pacificus nymphs over a 4‐year period, including the wet and cold El Niño winter/spring of 1998, in a dry oak/madrone woodland, and for one year in a cooler and moister redwood/tanoak woodland in Mendocino County, California. Linear regressions were used to estimate when nymphal densities first exceeded and then fell below 25, 50 and 75% of the recorded yearly peak densities. In oak/madrone woodland, nymphs typically were active by mid‐March, reached 50% of their yearly peak densities in early to mid‐April, peaked by early May, fell below 50% of their peak densities by early to mid‐June, and were absent by late July to mid‐August. The lengths of the periods with nymphal densities exceeding 50 and 75% of the recorded yearly peaks in oak/madrone woodland were associated positively with rainfall and negatively with maximum air temperatures during April–May. Moreover, nymphal numbers typically reached 50% of their peak 10–15 days later, remained at levels above 50% of the peak 1.3–1.5 times longer, and started declining 4–6 weeks later under cooler, moister climatic conditions (oak/madrone woodland in 1998 and redwood/tanoak woodland in 2000) relative to warmer, drier conditions (oak/madrone woodland in 2000–2001). In oak/madrone woodland, nymphal densities typically started to decline when mean maximum daily air temperatures exceeded 23°C. Nymphal densities were higher in dry oak/madrone relative to moist redwood/tanoak woodland from mid‐March to late May 2000, similar in both habitat types in early June, but higher in redwood/tanoak woodland from late June onwards. We conclude that large‐scale studies of the density of I. pacificus nymphs in California need to consider spatial variation in the length of nymphal activity periods and select temporal sampling regimens that yield representative data for all included habitat types.  相似文献   

19.
20.
The nymph of the western black‐legged tick (Ixodes pacificus) is an important bridging vector of the Lyme disease spirochete (Borrelia burgdorferi) to humans in the far‐western United States. The previously unknown dispersal capabilities of this life stage were studied in relation to logs, tree trunks, and adjacent leaf‐litter areas in a mixed hardwood forest using mark‐release‐recapture methods. In two spatially and temporally well‐spaced trials involving logs, the estimated mean distances that nymphs dispersed ranged from ≈0.04 to 0.20 m/day on logs vs 0.11 to 0.72 m/day in litter. Prior to recapture in either trial and within the confines of the sampling grids, the greatest estimated dispersal distances by individual nymphs released on logs, and in litter 0.5 m or 1.5 m from logs, were 2.4, 3.0, and 3.0 m, respectively. Nymphs released on logs or litter tended to remain within the same biotopes in which they were freed while host‐seeking. In two simultaneous trials involving trunks spaced close‐at‐hand, nymphs released at the trunk/litter interface on all four aspects collectively dispersed a mean of 0.353 m/day on trunks vs 0.175 m/day in litter. In either trial, the greatest distances that recaptured nymphs climbed trunks, or dispersed in litter in an encircling 3‐m grid, were 1.55 m and 2.97 m, respectively. Nymphs ascending trunks did not exhibit a preference for any one aspect, and the B. burgdorferi‐infection prevalences in nymphs that climbed trunks (3.2–4.0%) did not differ significantly from those that moved horizontally into litter (10.5–17.6%). We conclude that I. pacificus nymphs use an ambush host‐seeking strategy; that they disperse slowly in all biotopes studied; that they usually continue to host‐seek in or on whatever substratum they access initially; and that B. burgdorferi‐infected nymphs are as likely to move horizontally as vertically when offered a choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号