共查询到20条相似文献,搜索用时 8 毫秒
1.
Yujiro Kameyama Yoshinori Kawabe Akira Ito Masamichi Kamihira 《Biotechnology and bioengineering》2010,105(6):1106-1114
The Cre‐loxP system is frequently used for site‐specific recombination in animal cells. The equilibrium and specificity of the recombination reaction can be controlled using mutated loxPs. In the present study, we designed an accumulative site‐specific gene integration system using Cre recombinase and mutated loxPs in which the Cre‐mediated cassette exchange reaction is infinitely repeatable for target gene integration into loxP target sites. To evaluate the feasibility and usefulness of this system, a series of integration reactions were repeated and confirmed in vitro using Cre recombinase protein and plasmids. Accumulative gene integration was also performed on the genome of Chinese hamster ovary (CHO) cells. The results indicated that the system was applicable for repeated gene integration of multiple genes to the target sites on both plasmids and CHO cell genomes. This gene integration system provides a novel strategy for gene amplification and for biological analyses of gene function through the genetic modification of cells and organisms. Biotechnol. Bioeng. 2010;105: 1106–1114. © 2009 Wiley Periodicals, Inc. 相似文献
2.
Takeuchi T Nomura T Tsujita M Suzuki M Fuse T Mori H Mishina M 《Biochemical and biophysical research communications》2002,293(3):953-957
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background. 相似文献
3.
Paige Snider Sunyong Tang Goldie Lin Jian Wang Simon J. Conway 《Genesis (New York, N.Y. : 2000)》2009,47(7):469-475
Smad7 can be induced by various transforming growth factor‐β superfamily ligands and negatively modulates their signaling, thus acting in a negative, autocrine feedback manner. Previous analyses have demonstrated that although Smad7 is widely expressed, it is predominantly found in the vascular endothelium. Because of the restricted spatiotemporal reporter expression driven via a novel 4.3 kb Smad7 promoter in endocardial cells overlying the hearts atrioventricular (AV) cushions; we hypothesized that a transgenic Cre line would prove useful for the analysis of endocardial cushion and valve formation. Here we describe a mouse line, Smad7Cre, where Cre is robustly expressed within both cardiac outflow and AV endocardial cushions. Additionally, as endocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme, we crossed the Smad7Cre mice to the ROSA26eGFP‐DTA diphtheria toxin A‐expressing mice in order to genetically ablate Smad7Cre expressing cells. Ablation of Smad7Cre cells resulted in embryonic lethality by E11.5 and largely acellular endocardial cushions. genesis 47:469–475, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
To study paraxial mesoderm formation in the mouse, transgenic lines that can be used to either selectively delete or express genes of interest in the paraxial mesoderm are required. We have generated a transgenic mouse line that expresses Cre recombinase in the paraxial mesoderm (PAM) beginning at e7.5. A lacZ Cre recombinase reporter line showed that in addition to PAM and its derivatives, lateral plate and intermediate mesoderm derivatives were also exposed to Cre activity, while the node, notochord, and cardiac mesoderm were not. We further demonstrate that 70–75% of the fibroblasts generated from Dll1‐msd Cre, ROSA26‐rtTA embryos possess Cre recombinase activity. These mice can therefore be used in combination with tet‐responsive transgenic lines to generate mesoderm‐derived embryonic fibroblasts that inducibly express a gene of interest. genesis 47:309–313, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
5.
Shuohao Huang Yoshinori Kawabe Akira Ito Masamichi Kamihira 《Biotechnology and bioengineering》2010,107(4):717-729
Retroviral integrase is an enzyme responsible for the integration of retroviruses. A single mutation in the integrase core domain can severely compromise its integration ability, leading to the accumulation of circular retroviral cDNA in the nuclei of infected cells. We therefore attempted to use those cDNA as substrates for Cre recombinase to perform a recombinase‐mediated cassette exchange (RMCE), thereby targeting retroviral vectors to a predetermined site. An expression unit containing a promoter, an ATG codon and marker genes (hygromycin resistance gene and red fluorescent protein gene) flanked by wild‐type and mutant loxP sites was first introduced into cellular chromosome to build founder cell lines. We then constructed another plasmid for the production of integrase‐defective retroviral vectors (IDRV), which contains an ATG‐deficient neomycin resistance gene and green fluorescent protein gene, flanked by a compatible pair of loxPs. After providing founder cells with Cre and infecting with IDRV later, effective RMCE occurred, resulting in the appearance of G418‐resistant colonies and a change in the color of fluorescence from red to green. Southern blot and PCR analyses on selected clones further confirmed site‐specific recombination. The successful substitution of the original viral integration machinery with a non‐viral mechanism could expand the application of retroviral vectors. Biotechnol. Bioeng. 2010;107:717–729. © 2010 Wiley Periodicals, Inc. 相似文献
6.
Marker genes are essential for the selection and identification of rarely occurring transformation events generated in biotechnology. This includes plastid transformation, which requires that multiple copies of the modified chloroplast genome be present to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here, we demonstrate the precise excision of attP‐ and attB‐flanked DNA from the plastid genome mediated by the large serine recombinase Bxb1. We transformed the tobacco plastid genome with the pTCH‐PB vector containing a stuffer fragment of DNA flanked by directly oriented nonhomologous attP and attB recombinase recognition sites. In the absence of the Bxb1 recombinase, the transformed plastid genomes were stable and heritable. Nuclear‐transformed transgenic tobacco plants expressing a plastid‐targeted Bxb1 recombinase were crossed with transplastomic pTCH‐PB plants, and the T1 hybrids exhibited efficient excision of the target sequence. The Bxb1–att system should prove to be a useful tool for site‐specifically manipulating the plastid genome and generating marker‐free transplastomic plants. 相似文献
7.
Shuji Inoue Miki Inoue Sayoko Fujimura Ryuichi Nishinakamura 《Genesis (New York, N.Y. : 2000)》2010,48(3):207-212
Sall1 is expressed in the metanephric mesenchyme in the developing kidney, and mice deficient in Sall1 show kidney agenesis or dysgenesis. Sall1 is also expressed elsewhere, including in the limb buds, anus, heart, and central nervous system. Dominant‐negative mutations of Sall1 in mice and humans lead to developmental defects in these organs. Here, we generated a mouse line expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the endogenous Sall1 promoter. Upon tamoxifen treatment, these mice showed genomic recombination in the tissues where endogenous Sall1 is expressed. When CreERT2 mice were crossed with the floxed Sall1 allele, tamoxifen administration during gestation led to a significant decrease in Sall1 expression and small kidneys at birth, suggesting that Sall1 functions were disrupted. Furthermore, Sall1 expression in the kidney was significantly reduced by neonatal tamoxifen treatment. The Sall1CreERT2 mouse is a valuable tool for in vivo time‐dependent and region‐specific knockout and overexpression studies. genesis 48:207–212, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
8.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 相似文献
9.
Zengming Zhao Yanxun Sun Ning Hou Yan Teng Youliang Wang Xiao Yang 《Genesis (New York, N.Y. : 2000)》2009,47(10):674-679
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
10.
11.
Henriette Undeutsch Christoffer Löf Stefan Offermanns Jukka Kero 《Genesis (New York, N.Y. : 2000)》2014,52(4):333-340
We have created a mouse model expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to be able to study the role of defined genetic modifications in the regulation of thyroid function. We chose the thyroglobulin promoter, as it is expressed specifically in the thyroid. In order to obtain reliable expression under the control of the Tg promoter, we used a P1 artificial chromosome (PAC) containing a large piece of the Tg promoter. A tamoxifen inducible CreERT2 construct was selected to avoid the possible consequences of the gene deletion for the development of the thyroid gland, and to study the role of gene deletion in the adult thyroid. Transgenic lines (TgCreERT2) carrying this construct were generated and analyzed by crossing the TgCreERT2 mice with the ROSA26LacZ reporter strain. The activity and specificity of the Cre recombinase was tested by staining for β‐galactosidase activity and by immunohistochemistry using an anti‐Cre‐antibody. In the TgCreERT2xROSA26LacZ reporter line, Cre‐mediated recombination occurred specifically in the thyrocytes only after tamoxifen administration, and no significant staining was observed in controls. The recombination efficiency was nearly complete, since almost all thyrocytes showed X‐gal staining. We could also induce the recombination in utero by giving tamoxifen to the pregnant female. In addition, mice expressing TgCreERT2 had no obvious histological changes, hormonal alterations, or different response to growth stimuli as compared to controls. These results demonstrate that the TgCreERT2 mouse line is a powerful tool to study temporally controlled deletion of floxed genes in the thyroid. genesis 52:333–340, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
12.
13.
Emily J. Boniface Jianjun Lu Tristan Victoroff Meiying Zhu Wenbiao Chen 《Genesis (New York, N.Y. : 2000)》2009,47(7):484-491
Site‐specific recombinases such as Cre and Flp are invaluable tools for genetic manipulations, but their usage in zebrafish has been limited. Incorporating recently developed flip‐excision (FlEx) design that allows stable inversions, we have established zebrafish reporter lines that express bright and ubiquitous EGFP, but switch to express mCherry in the presence of Cre or Flp. Here, we demonstrate the stable inversion in the reporter lines, both in somatic cells and in the germ line by Cre or Flp, and the subsequent reinversion using the other recombinase. Using the reporter lines, we characterized cardiomyocyte‐specific Cre lines and neuronal progenitor‐specific and tamoxifen‐dependent Cre lines. We also used the reporter lines for screening Cre‐ and Flp‐based enhancer trap lines. Similar to the widely used Cre reporter lines in mice, these FlEx‐based reporter lines will facilitate the use of recombinases for genetic manipulations in zebrafish. genesis 47:484–491, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
14.
15.
Placental development is a complex and highly controlled process during which trophoblast stem cells differentiate to various trophoblast subtypes. The early embryonic death of systemic gene knockout models hampers the investigation of these genes that might play important roles during placentation. A trophoblast specific Cre mouse model would be of great help for dissecting out the potential roles of these genes during placental development. For this purpose, we generate a transgenic mouse with the Cre recombinase inserted into the endogenous locus of Elf5 gene that is expressed specifically in placental trophoblast cells. To analyze the specificity and efficiency of Cre recombinase activity in Elf5‐Cre mice, we mated Elf5‐Cre mice with Rosa26mT/mG reporter mice, and found that Elf5‐Cre transgene is expressed specifically in the trophoectoderm as early as embryonic day 4.5 (E4.5). By E12.5, the activity of Elf5‐Cre transgene was detected exclusively in all derivatives of trophoblast lineages, including spongiotrophoblast, giant cells, and labyrinth trophoblasts. In addition, Elf5‐Cre transgene was also active during spermatogenesis, from spermatids to mature sperms, which is consistent with the endogenous Elf5 expression in testis. Collectively, our results provide a unique tool to delete specific genes selectively and efficiently in trophoblast lineage during placentation. 相似文献
16.
Peter Cserjesi Lisa L. Hua Meghan E. Garstka Heather M. Brody Yuka Morikawa 《Genesis (New York, N.Y. : 2000)》2010,48(8):479-484
Hand1 regulates development of numerous tissues within the embryo, extraembryonic mesoderm, and trophectoderm. Systemic loss of Hand1 results in early embryonic lethality but the cause has remained unknown. To determine if Hand1 expression in extraembryonic mesoderm is essential for embryonic survival, Hand1 was conditionally deleted using the HoxB6‐Cre mouse line that expresses Cre in extraembryonic and lateral mesoderm. Deletion of Hand1 using HoxB6‐Cre resulted in embryonic lethality identical to systemic knockout. To determine if lethality is due to Hand1 function in extraembryonic mesoderm or lateral mesoderm, we generated a Tlx2‐Cre mouse line expressing Cre in lateral mesoderm but not extraembryonic tissues. Deletion of Hand1 using the Tlx2‐Cre line results in embryonic survival with embryos exhibiting herniated gut and thin enteric smooth muscle. Our results show that Hand1 regulates development of lateral mesoderm derivatives and its loss in extraembryonic mesoderm is the primary cause of lethality in Hand1‐null embryos. genesis 48:479–484, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
17.
18.
Bruno Luckow Amy Hänggli Holger Maier Silvia Chilla Robert P. Loewe Stefan Dehmel Detlef Schlöndorff Pius Loetscher Hans‐Günter Zerwes Matthias Müller 《Genesis (New York, N.Y. : 2000)》2009,47(8):545-558
The chemokine receptors CCR2 and CCR5 represent potential novel therapeutic targets to treat important inflammatory and infectious diseases, including atherosclerosis and HIV infection. To study the functions of both receptors in vivo, we aimed to generate Ccr2/Ccr5 double‐deficient mice. As these genes are separated by <20 kb, they were inactivated consecutively by two rounds of gene targeting in embryonic stem (ES) cells. Thereby neomycin and hygromycin selection cassettes flanked by four identical loxP recognition sequences for Cre recombinase were integrated into the ES cell genome together with EGFP and DsRed2 reporter genes. Both selection cassettes could be deleted in vitro by transiently transfecting ES cells with Cre expression vectors. However, after blastocyst microinjection these cells yielded only weak chimeras, and germline transmission was not achieved. Therefore, Ccr2/Ccr5 double‐deficient mice were generated from ES cells still carrying both selection cassettes. Microinjection of zygotes with a recombinant fusion protein consisting of maltose‐binding protein and Cre (MBP‐Cre) allowed the selective deletion of both cassettes. All sequences in between and both reporter genes were left intact. Deletion of both selection cassettes resulted in enhanced DsRed2 reporter gene expression. Cre protein microinjection of zygotes represents a novel approach to perform complex recombination tasks. genesis 47:545–558, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
19.
20.
Liping Zhao Marit Bakke Yelena Krimkevich Lisa J. Cushman A. F. Parlow Sally A. Camper Keith L. Parker 《Genesis (New York, N.Y. : 2000)》2001,30(2):65-69
Summary: The bacteriophage Cre recombinase provides a powerful approach for tissue‐specific gene inactivation. Using a Cre transgene driven by the common alpha subunit of glycoprotein hormones (αGSU‐Cre), we have previously inactivated steroidogenic factor 1 (SF‐1) in the anterior pituitary, causing hypogonadotropic hypogonadism with sexual infantilism, sterility, and severe gonadal hypoplasia. We now explore the molecular mechanisms underlying a hypomorphic gonadal phenotype in mice carrying two floxed SF‐1 alleles (F/F) relative to mice carrying one recombined and one floxed allele (F/R). Because their Cre‐mediated disruption of the locus encoding SF‐1 was less efficient, αGSU‐Cre, F/F mice retained some gonadotropin‐expressing cells in the anterior pituitary, thereby stimulating some gonadal function. This novel in vivo model for exploring the effects of differing levels of gonadotropins on gonadal development highlights the need for careful genotype‐phenotype comparisons in studies using Cre recombinase to produce tissue‐specific knockouts. genesis 30:65–69, 2001. © 2001 Wiley‐Liss, Inc. 相似文献