首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveMesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation.ResultsThere was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells.ConclusionThis is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.  相似文献   

2.
Wu X  Ren J  Li J 《Cytotherapy》2012,14(5):555-562
The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.  相似文献   

3.
Background aimsMesenchymal stromal cells (MSC) exhibit non-specific hematopoietic cell and/or stromal cell markers (e.g. CD73, CD105 and CD166) that have been used to identify MSC by flow cytometry. Because a neural glial antigen, NG2 (a progenitor cell marker in the central nervous system), is expressed by several tissue cells originating in the mesenchyme but not hematopoietic cells, it might be useful for isolating and identifying MSC. We investigated NG2 expression on culture-expanded MSC by flow cytometry.MethodsHuman bone marrow (BM) samples taken from 12 donors were cultured for MSC to be used in up to nine serial passages. Using flow cytometry, the neural glial antigen NG2 and commonly used MSC markers CD73, CD105 and CD166, were analyzed on the surface of culture-expanded MSC. The multipotential differentiation of the MSC was examined by adipogenic and osteogenic induction.ResultsThe percentage of cells positive for NG2 was similar to the percentages of cells positive for CD73, CD105 and CD166 in all passages of BM samples. The mean fluorescent intensities of NG2 did not change with culture passage. The MSC was successfully differentiated into adipogenic and osteogenic lines. The cells showed no karyotypic abnormalities.ConclusionsNG2 seems to be a promising marker for investigating the biology of MSC.  相似文献   

4.
Human placenta is an attractive source of mesenchymal stem cells (MSC) for regenerative medicine. The cell surface markers expressed on MSC have been proposed as useful tools for the isolation of MSC from other cell populations. However, the correlation between the expression of MSC markers and the ability to support tissue regeneration in vivo has not been well examined. Here, we established several MSC lines from human placenta and examined the expression of their cell surface markers and their ability to differentiate toward mesenchymal cell lineages. We found that the expression of CD349/frizzled‐9, a receptor for Wnt ligands, was positive in placenta‐derived MSC. So, we isolated CD349‐negative and ‐positive fractions from an MSC line and examined how successfully cell engraftment repaired fractured bone and recovered blood flow in ischemic regions using mouse models. CD349‐negative and ‐positive cells displayed a similar expression pattern of cell surface markers and facilitated the repair of fractured bone in transplantation experiments in mice. Interestingly, CD349‐negative, but not CD349‐positive cells, showed significant effects on recovering blood flow following vascular occlusion. We found that induction of PDGFβ and bFGF mRNAs by hypoxia was greater in CD349‐negative cells than in CD349‐positive cells while the expression of VEGF was not significantly different in CD349‐negative and CD349‐positive cells. These findings suggest the possibility that CD349 could be utilized as a specialized marker for MSC isolation for re‐endothelialization. J. Cell. Physiol. 226: 224–235, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
At least some cells within bone marrow stromal populations are multipotential (i.e., differentiate in vitro into osteoblasts, chondrocytes, and adipocytes) and thus designated skeletal stem cells (SSCs) or mesenchymal stem cells (MSCs) amongst other names. Recently, a subpopulation of stromal cells, notably osteoblasts or their progenitors, has been identified as a definitive regulatory component of the hematopoietic stem cell (HSC) niche. Thus, the development of methods for purifying not only SSCs but cells comprising the HSC niche is of interest. Here, we report a method for purifying a novel bone marrow‐derived population with a high frequency of osteoprogenitors and high expression levels of osteoblast differentiation markers (highly purified osteoprogenitors (HipOPs)) as well as markers of the bone niche for HSCs. In vivo transplantation experiments demonstrated that donor HipOPs differentiated into not only osteoblasts, osteocytes and cells around sinusoids but also hematopoietic cells. Thus, HipOPs represent a novel population for simultaneous reconstruction of bone and bone marrow microenvironments. J. Cell. Biochem. 108: 368–377, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Human mesenchymal stem cells (MSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. This differentiation potential makes MSC excellent candidates for cell-based tissue engineering. In this study, we have examined phenotypes and gene expression profile of the human adipose tissue-derived stromal cells (ATSC) in the undifferentiated states, and compared with that of bone marrow stromal cells (BMSC). ATSC were enzymatically released from adipose tissues from adult human donors and were expanded in monolayer with serial passages at confluence. BMSC were harvested from the metaphysis of adult human femur. Flowcytometric analysis showed that ATSC have a marker expression that is similar to that of BMSC. ATSC expressed CD29, CD44, CD90, CD105 and were absent for HLA-DR and c-kit expression. Under appropriate culture conditions, MSC were induced to differentiate to the osteoblast, adipocyte, and chondrogenic lineages. ATSC were superior to BMSC in respect to maintenance of proliferating ability, and microarray analysis of gene expression revealed differentially expressed genes between ATSC and BMSC. The proliferating ability and differentiation potential of ATSC were variable according to the culture condition. The similarities of the phenotypes and the gene expression profiles between ATSC and BMSC could have broad implications for human tissue engineering.  相似文献   

7.
The prevailing school of thought is that mesenchymal stromal cells (MSC) do not express CD34, and this sets MSC apart from hematopoietic stem cells (HSC), which do express CD34. However, the evidence for MSC being CD34? is largely based on cultured MSC, not tissue-resident MSC, and the existence of CD34? HSC is in fact well documented. Furthermore, the Stro-1 antibody, which has been used extensively for the identification/isolation of MSC, was generated by using CD34+ bone marrow cells as immunogen. Thus, neither MSC being CD34? nor HSC being CD34+ is entirely correct. In particular, two studies that analyzed CD34 expression in uncultured human bone marrow nucleated cells found that MSC (BMSC) existed in the CD34+ fraction. Several studies have also found that freshly isolated adipose-derived MSC (ADSC) express CD34. In addition, all of these ADSC studies and several other MSC studies have observed a disappearance of CD34 expression when the cells are propagated in culture. Thus the available evidence points to CD34 being expressed in tissue-resident MSC, and its negative finding being a consequence of cell culturing.  相似文献   

8.
Background aimsAdvances in bone tissue engineering with mesenchymal stromal cells (MSC) as an alternative to conventional orthopedic procedures has opened new horizons for the treatment of large bone defects. Bone marrow (BM) and trabecular bone are both sources of MSC. Regarding clinical use, we tested the potency of MSC from different sources.MethodsWe obtained MSC from 17 donors (mean age 64.6 years) by extensive washing of trabecular bone from the femoral head and trochanter, as well as BM aspirates of the iliac crest and trochanter. The starting material was evaluated by histologic analysis and assessment of colony-forming unit–fibroblasts (CFU-F). The MSC populations were compared for proliferation and differentiation potential, at RNA and morphologic levels.ResultsMSC proliferation potential and immunophenotype (expression of CD49a, CD73, CD90, CD105, CD146 and Stro-1) were similar whatever the starting material. However, the differentiation potential of MSC obtained by bone washing was impaired compared with aspiration; culture-amplified cells showed few Oil Red O-positive adipocytes and few mineralized areas and formed inconsistent Alcian blue-positive high-density micropellets after growth under adipogenic, osteogenic and chondrogenic conditions, respectively. MSC cultured with 1 ng/mL fibroblast growth factor 2 (FGF-2) showed better differentiation potential.ConclusionsTrabecular bone MSC from elderly patients is not good starting material for use in cell therapy for bone repair and regeneration, unless cultured in the presence of FGF-2.  相似文献   

9.
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.  相似文献   

10.
Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.  相似文献   

11.
Haemopoietic stem cells in vivo proliferate and develop in association with stromal cells of the bone marrow. Proliferation and differentiation of haemopoietic stem cells also occurs in vitro, either in association with stromal cells or in response to soluble growth factors. Many of the growth factors that promote growth and development of haemopoietic cells in vitro have now been molecularly cloned and purified to homogeneity and various techniques have been described that allow enrichment (to near homogeneity) of multipotential stem cells. This in turn, has facilitated studies at the mechanistic level regarding the role of such growth factors in self-renewal and differentiation of stem cells and their relevance in stromal-cell mediated haemopoiesis. Our studies have shown that at least some multipotential cells express receptors for most, if not all, of the haemopoietic cell growth factors already characterized and that to elicit a response, several growth factors often need to be present at the same time. Furthermore, lineage development reflects the stimuli to which the cells are exposed, that is, some stimuli promote differentiation and development of multipotential cells into multiple cell lineages, whereas others promote development of multipotential cell into only one cell lineage. We suggest that, in the bone marrow environment, the stromal cells produce or sequester different types of growth factors, leading to the formation of microenvironments that direct cells along certain lineages. Furthermore, a model system has been used to show the possibility that the self-renewal probability of multipotential cells can also be modulated by the range and concentrations of growth factors present in the environment. This suggests that discrete microenvironments, preferentially promoting self-renewal rather than differentiation of multipotential cells, may also be provided by marrow stromal cells and sequestered growth factors.  相似文献   

12.
Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.  相似文献   

13.
Mesenchymal stem or stromal cells (MSCs) were initially isolated from the bone marrow and received their name on the basis of their ability to differentiate into multiple lineages such as bone, cartilage, fat and muscle. However, more recent studies suggest that MSCs residing in perivascular compartments of the small and large blood vessels play a regulatory function supporting physiologic and pathologic responses of parenchymal cells, which define the functional representation of an organ or tissue. MSCs secrete or express factors that reach neighbouring parenchymal cells via either a paracrine effect or a direct cell‐to‐cell interaction promoting functional activity, survival and proliferation of the parenchymal cells. Previous concept of ‘epithelial–stromal’ interactions can now be widened. Given that MSC can also support hematopoietic, neuronal and other non‐epithelial parenchymal lineages, terms ‘parenchymal–stromal’ or ‘parenchymal–mesenchymal’ interactions may better describe the supportive or ‘trophic’ functions of MSC. Importantly, in many cases, MSCs specifically provide supportive microenvironment for the most primitive stem or progenitor populations and therefore can play a role as ‘stem/progenitor niche’ forming cells. So far, regulatory roles of MSCs have been reported in many tissues. In this review article, we summarize the latest studies that focused on the supportive function of MSC. This thread of research leads to a new perspective on the interactions between parenchymal and mesenchymal cells and justifies a principally novel approach for regenerative medicine based on co‐application of MSC and parenchymal cell for the most efficient tissue repair. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The use of stem cells has opened new prospects for the treatment of orthopaedic conditions characterized by large bone defects. However, many issues still exist to which answers are needed before routine, large-scale application becomes possible. Bone marrow stromal cells (MSC), which are clonogenic, multipotential precursors present in the bone marrow stroma, are generally employed for bone regeneration. Stem cells with multilineage differentiation similar to MSC have also been demonstrated in adipose tissue, peripheral blood, umbilical cord and amniotic fluid. Each source presents its own advantages and drawbacks. Unfortunately, no unique surface antigen is expressed by MSC, and this hampers simple MSC enrichment from heterogeneous populations. MSC are identified through a combination of physical, morphological and functional assays. Different in vitro and in vivo models have been described for the research on bone stem cells. These models should predict the in vivo bone healing capacity of MSC and if the induced osteogenesis is similar to the physiological one. Although stem cells offer an exciting possibility of a renewable source of cells and tissues for replacement, orthopaedic applications often represent case reports whereas controlled randomized trials are still lacking. Further biological aspects of bone stem cells should be elucidated and a general consensus on the best models, protocols and proper use of scaffolds and growth factors should be achieved.  相似文献   

15.
Bone marrow stroma contains mesenchymal stem cells (MSC) which are progenitor cells, at least for tissues arising from mesechyma. The study of MSC biology yields controversial data. Therefore further experiments are needed to characterize these cells. The aim of our research was to compare primary cultures and subcultures of stromal precursor cells isolated from rat bone marrow. Long-term cultures of these cells isolated from 5 animals have been obtained. Morphological, immunophenotypic, and functional (capacity to osteogenic differentiation) characteristics of the cells have been investigated. We show that the cell morphology in the cultures is highly heterogenic. Morphological cell types are described. Heterogeneity of stromal cells declines on late passages. Cell cultures isolated from different animals have the same immunophenotypic markers (CD90, CD44, CD54, CD106, CD45, CD11b) but different morphological characteristics and a different capacity to osteogenic differentiation during long-term cultivation. The data show that more specific markers and functional tests should be applied to identify MSC.  相似文献   

16.
Subcutaneous transplantation of mesenchymal stromal cells (MSC) emerged as an alternative to intravenous administration because it avoids the pulmonary embolism and prolongs post‐transplantation lifetime. The goal of this study was to investigate the mechanisms by which these cells could affect remote organs. To this aim, murine bone marrow–derived MSC were subcutaneously transplanted in different anatomical regions and the survival and behaviour have been followed. The results showed that upon subcutaneous transplantation in mice, MSC formed multicellular aggregates and did not migrate significantly from the site of injection. Our data suggest an important role of hypoxia‐inducible signalling pathways in stimulating local angiogenesis and the ensuing modulation of the kinetics of circulating cytokines with putative protective effects at distant sites. These data expand the current understanding of cell behaviour after subcutaneous transplantation and contribute to the development of a non‐invasive cell‐based therapy for distant organ protection.  相似文献   

17.
BACKGROUND: Mesenchymal stromal cells (MSC) have the potential to differentiate into distinct mesenchymal tissues including cartilage, suggesting that these cells are an attractive cell source for cartilage tissue engineering approaches. Various methods, such as using hyaluronan-based materials, have been employed to improve transplantation for repair. Our objective was to study the effects of autologous transplantation of rabbit MSC with hyaluronic acid gel sponges into full-thickness osteochondral defects of the knee. METHODS: Rabbit BM-derived MSC were cultured and expanded with fibroblast growth factor (FGF). Specimens were harvested at 4 and 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type II collagen and CD44. RESULTS: The regenerated area after autologous transplantation of hyaluronic acid gel sponge loaded with MSC into the osteochondral defect at 12 weeks after surgery showed well-repaired cartilage tissue, resembling the articular cartilage of the surrounding structure, of which the histologic score was significantly better than that of the untreated osteochondral defect. In the regenerated cartilage, type II collagen was found in the pericellular matrix of regenerative chondrocytes, while CD44 expression in the regenerative tissue could not be revealed. DISCUSSION: These data suggest that the autologous transplantation of MSC embedded in hyaluronan-based material may support chondrogenic differentiation and be useful for osteochondral defect repair.  相似文献   

18.
19.
Recent progress in the research of mesenchymal stromal cells/multipotent stromal cells (MSC) has revealed numerous beneficial innate characteristics, suggesting potential value in an array of cellular therapies. MSC are easily isolated from bone marrow (BM), fat and other tissues, and are readily propagated in vitro. Transplanted/injected MSC have been shown to migrate to a variety of organs and tissues; however, sites of inflammation and pathology elicit enhanced MSC homing for tissue remodeling and repair. Tumors utilize many of the same inflammatory mediators uncovered in wound healing and likewise provide a site for preferential MSC homing. Although incorporation into the tumor microenvironment is apparent, the role of recruited MSC in the tumor microenvironment remains unclear. Some published studies have shown enhancement of tumor growth and development, perhaps through immunomodulatory and pro-angiogenic properties, while others have shown no apparent effect or have demonstrated inhibition of tumor growth and extended survival. This controversy remains at the forefront as clinical applications of MSC commence in anti-tumor therapies as well as as adjuncts to stem cell transplantation and in ameliorating graft-versus-host disease. Careful analysis of past studies and thoughtful design of future experiments will help to resolve the discrepancies in the field and lead to clinical utility of MSC in disease treatment. This review highlights the current theories of the role of MSC in tumors and explores current controversies.  相似文献   

20.
A current challenge in mesenchymal stem cell (MSC)‐based cartilage repair is to solve donor and tissue‐dependent variability of MSC cultures and to prevent chondrogenic cells from terminal differentiation like in the growth plate. The aim of this study was to select the best source for MSC which could promise stable cartilage formation in the absence of hypertrophy and ectopic in vivo mineralization. We hypothesized that MSC from synovium are superior to bone marrow‐ and adipose tissue‐derived MSC since they are derived from a joint tissue. MSC were characterized by flow cytometry. MSC pellets were cultured under chondrogenic conditions and differentiation was evaluated by histology, gene expression analysis, and determination of alkaline phosphatase activity (ALP). After chondrogenic induction, pellets were transplanted subcutaneously into SCID mice. MSC from bone marrow, adipose tissue, and synovium revealed similar COL2A1/COL10A1 mRNA levels after chondrogenic induction and were positive for collagen‐type‐X. Bone marrow‐derived and adipose tissue‐derived MSC showed significantly higher ALP activity than MSC from synovium. Low ALP‐activity before transplantation of pellets correlated with marginal calcification of explants. Surprisingly, non‐mineralizing transplants specifically lost their collagen‐type II, but not collagen‐type I deposition in vivo, or were fully degraded. In conclusion, the lower donor‐dependent ALP activation and reduced mineralization of synovium‐derived heterotopic transplants did not lead to stable ectopic cartilage as known from articular chondrocytes, but correlated with fibrous dedifferentation or complete degeneration of MSC pellets. This emphasizes that beside appropriate induction of differentiation, locking of MSC in the desired differentiation state is a major challenge for MSC‐based repair strategies. J. Cell. Physiol. 219: 219–226, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号