首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐density lipoprotein (LDL) is known as ‘bad’ cholesterol. If too much LDL circulates in the blood it can be retained in the walls of the arteries, causing atherosclerosis. In this paper we showed an alternative method to quantify LDL using the europium tetracycline (EuTc) indicator. The optical properties of the EuTc complex were investigated in aqueous solutions containing LDL. An enhancement was observed of the europium luminescence in the solutions with LDL compared those without the lipoprotein. A method to quantify the amount of LDL in a sample, based on EuTc enhanced luminescence, is proposed. The enhancement mechanism is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Our aim was to characterize HDL subspecies and fat-soluble vitamin levels in a kindred with familial apolipoprotein A-I (apoA-I) deficiency. Sequencing of the APOA1 gene revealed a nonsense mutation at codon -2, Q[-2]X, with two documented homozygotes, eight heterozygotes, and two normal subjects in the kindred. Homozygotes presented markedly decreased HDL cholesterol levels, undetectable plasma apoA-1, tuboeruptive and planar xanthomas, mild corneal arcus and opacification, and severe premature coronary artery disease. In both homozygotes, analysis of HDL particles by two-dimensional gel electrophoresis revealed undetectable apoA-I, decreased amounts of small alpha-3 migrating apoA-II particles, and only modestly decreased normal amounts of slow alpha migrating apoA-IV- and apoE-containing HDL, while in the eight heterozygotes, there was loss of large alpha-1 HDL particles. There were no significant decreases in plasma fat-soluble vitamin levels noted in either homozygotes or heterozygotes compared with normal control subjects. Our data indicate that isolated apoA-I deficiency results in marked HDL deficiency with very low apoA-II alpha-3 HDL particles, modest reductions in the separate and distinct plasma apoA-IV and apoE HDL particles, tuboeruptive xanthomas, premature coronary atherosclerosis, and no evidence of fat malabsorption.  相似文献   

4.
5.
Atherosclerosis is an inflammatory process occurring in arterial tissue, involving the subintimal accumulation of LDL. Measurement of the rate at which LDL and other lipoproteins, such as HDL and VLDL, enter and exit the tissue can provide insight into the mechanisms involved in the development of atherosclerotic lesions. Permeation of VLDL, LDL, HDL, and glucose was measured for both normal and atherosclerotic human carotid endarterectomy tissues (CEA) at 20°C and 37°C using optical coherence tomography (OCT). The rates for LDL permeation through normal CEA tissue were (3.16 ± 0.37) × 10(-5) cm/s at 20°C and (4.77 ± 0.48) × 10(-5) cm/s at 37°C, significantly greater (P < 0.05) than the rates for atherosclerotic CEA tissue at these temperatures [(1.97 ± 0.34) × 10(-5) cm/s at 20°C and (2.01 ± 0.23) × 10(-5) cm/s at 37°C]. This study effectively used OCT to measure the rates at which naturally occurring lipoproteins enter both normal and diseased carotid intimal tissue.  相似文献   

6.
The effects of oxidized human plasma low density lipoproteins (Ox-LDL) on the proliferation of cultured aortic smooth muscle cells was studied, employing viable cell counting, [3H] thymidine incorporation into DNA, and the release of lactate dehydrogenase (LDH) into the medium. Oxidized LDL (prepared by incubation of LDL with copper sulfate) exerted a concentration-dependent stimulation (2 fold, compared to control) of aortic smooth muscle cell proliferation at low concentrations (0.1 µg – 10 µg/ml medium). On the other hand, at high concentrations (25–200 µg/ml), Ox-LDL produced a pronounced decrease in viable cells, a decrease in the incorporation of [3H] thymidine into DNA, and an increase in the release of LDH in the medium. In this report, the previously postulated biological roles of oxidized-LDL in atherosclerosis are discussed in view of these findings.Abbreviations Ox-LDL Oxidized human plasma Low Density Lipoproteins - SMC Smooth Muscle Cells - LDH Lactate Dehydrogenase - LPC Lysophosphatidycholine - PC Phosphatidylcholine - TNF Tumor Necrosis Factor  相似文献   

7.
Wei DH  Wang GX  Tang CJ  Ye LQ  Yang L  Deng LH  Liu LS  Wang Z  Tang CK 《生理学报》2007,59(6):831-839
低密度脂蛋白(low density lipoprotein,LDL)浓度极化可能是动脉粥样硬化局灶性的重要原因,本文以狭窄血管远心端为研究对象,探讨LDL浓度极化对动脉粥样硬化发生、发展的影响。用数值计算模拟狭窄血管远心端LDL的壁面浓度分布,用激光扫描共聚焦显微镜测定狭窄血管远心端LDL沿z轴的浓度分布;用外科手术方法建立颈总动脉局部狭窄的实验模型,从整体动物水平观察LDL浓度极化对动脉粥样硬化形成的影响。数值计算和激光扫描共聚焦显微镜测定的结果表明,狭窄血管远心端存在显著的LDL浓度极化现象,且LDL壁面浓度与入口液流速度和狭窄程度有关:在相同的速率下,LDL壁面浓度在狭窄度为40%的圆管内最大;在狭窄程度相同的情况下,雷诺数(Re)为250时测得的LDL壁面浓度高于Re为500时测得的壁面浓度。整体动物实验表明,在狭窄血管远心端LDL浓度极化显著的区域形成明显的动脉粥样硬化病变,并且有大量的脂质沉积。以上结果提示,LDL浓度极化可能是导致动脉粥样硬化局灶性的重要因素。  相似文献   

8.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

9.
Morphological changes in the outer retina such as drusen are established biomarkers to diagnose age‐related macular degeneration. However, earlier diagnosis might be possible by taking advantage of more subtle changes that accompany tissues that bear polarization‐altering properties. To test this hypothesis, we developed a method based on polarization‐sensitive optical coherence tomography with which volumetric data sets of the macula were obtained from 10 young (<25 years) and 10 older (>54 years) subjects. All young subjects and 5 of the older subjects had retardance values induced by the retinal pigment epithelium and Bruch's membrane (RPE‐BM) complex that were just above the noise floor measurement (5°‐13° at 840 nm). In contrast, elevated retardance, up to 180°, was observed in the other 5 older subjects. Analysis of the degree of polarization uniformity (DOPU) demonstrates that reduced DOPU (<0.4) in the RPE is associated with elevated double pass phase retardation (DPPR) below the RPE‐BM complex, suggesting that the observed elevated DPPR in older subjects is the result of increased scattering or polarization scrambling. Collectively, our measurements show that the outer retina can undergo dramatic change in its polarization properties with age, and in some cases still retain its clinically normal appearance.   相似文献   

10.
11.
12.
The progression of diabetic cardiomyopathy is related to cardiomyocyte dysfunction and apoptosis. Our previous studies showed that asporin (ASPN) was significantly increased in the myocardium of db/db mice through proteomics, and grape seed procyanidin B2 (GSPB2) significantly inhibited the expression of ASPN in the heart of db/db mice. We report here that ASPN played a critical role in glycated low‐density lipoproteins (gly‐LDL) induced‐cardiomyocyte apoptosis. We found that gly‐LDL upregulated ASPN expression. ASPN increased H9C2 cardiomyocyte apoptosis with down‐regulation of Bcl‐2, upregulation of transforming growth factor‐β1, Bax, collagen III, fibronectin, and phosphorylation of smad2 and smad3. However, GSPB2 treatment reversed ASPN‐induced impairments in H9C2 cardiomyocytes. These results provide evidence for the cardioprotective action of GSPB2 against ASPN injury, and thus suggest a new target for fighting against diabetic cardiomyopathy.  相似文献   

13.
The effect of acute inhalation of cigarette smoke on high density lipoprotein (HDL) phospholipid composition in White Carneau pigeons was examined. Four treatments included: 1) Shelf Control birds fed a chow diet and retained in their cages; 2) Sham pigeons fed a cholesterol-saturated fat diet and exposed to fresh air by a smoking machine; 3) Low nicotine-low carbon monoxide (LoLo) animals also fed the cholesterol diet and exposed to low concentrations of these cigarette smoke products; and 4) High nicotine-high carbon monoxide (HiHi) birds fed the cholesterol diet and subjected to high concentrations of these inhalants. The cholesterol-fat diet caused an increase in the concentration of most HDL phospholipid classes. Exposure to the HiHi regimen resulted in an increase in the HDL cholesterol/phospholipid ratio and a reduction in the concentration of HDL phosphatidyl ethanolamine, phosphatidyl serine/inositol, sphingomyelin and lysophosphatidyl choline. Cigarette smoking may thus attenuate HDL's anti-atherogenic properties by altering surface phospholipid components.  相似文献   

14.
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP‐9) expression and protein secretion through the activation of MAPK‐ERK and NF‐κB signaling pathways. Previously, we demonstrated that activated α2‐macroglulin (α2M*) through the interaction with its receptor low‐density lipoprotein receptor‐related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK‐ERK1/2. In the present work, we examined whether α2M*/LRP1interaction could induce the MMP‐9 production in J774 and Raw264.7 macrophage‐derived cell lines. It was shown that α2M* promoted MMP‐9 expression and protein secretion by LRP1 in both macrophage‐derived cell lines, which was mediated by the activation of MAPK‐ERK1/2 and NF‐κB. Both intracellular signaling pathways activated by α2M* were effectively blocked by calphostin‐C, suggesting involvement of PKC. In addition, we demonstrate that α2M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA‐AM, the α2M*‐induced MAPK‐ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF‐κB, it was shown that the α2M*‐induced MMP‐9 protein secretion was inhibited, indicating that the MMP production promoted by the α2M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression. J. Cell. Biochem. 111: 607–617, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Homocysteine-thiolactone (HcyT) is a toxic product whose synthesis is directly proportional to plasma homocysteine (Hcy) levels. Previous studies demonstrated that the interaction between HcyT and low density lipoproteins (LDL) induces the formation of homocystamide-LDL adducts (Hcy-LDL). Structural and functional alterations of Hcy-LDL have been described and it has been suggested that homocysteinylation could increase atherogenicity of LDL. Oxidative damage of endothelial cells (EC) is considered to be a critical aspect of the atherosclerotic process. To further investigate the molecular mechanisms involved in the atherogenicity of homocysteinylated LDL, we studied the effect of interaction between Hcy-LDL and EC on cell oxidative damage, using human aortic endothelial cells (HAEC) as experimental model. Homocysteinylation of LDL was carried out by incubation of LDL, isolated from plasma of healthy normolipemic subjects, with HcyT (10-100 microM). In our experimental conditions, homocysteinylation treatment was not accompanied by oxidative damage of LDL. No modifications of apoprotein structure and physico-chemical properties were observed in Hcy-LDL with respect to control LDL (c-LDL), as evaluated using the intrinsic fluorescence of tryptophan and the probe Laurdan incorporated in lipoproteins. Our results demonstrated that Hcy-LDL incubated at 37 degrees C for 3 h with HAEC, induced an oxidative damage on human EC with a significant increase of lipid hydroperoxides in cells incubated with Hcy-LDL with respect to cell incubated with c-LDL. The compositional changes were associated with a significant decrease viability in cells treated with Hcy-LDL. The relationship between the levels of -SH groups of LDL and the oxidative damage of HAEC has been demonstrated. These results suggest that Hcy-LDL exert a cytotoxic effect that is likely related to an increase in lipid peroxidation and oxidative damage of EC.  相似文献   

17.
Probability density function (PDF) analysis with K‐distribution model of optical coherence tomography (OCT) intensity signals has previously yielded a good representation of the average number of scatterers in a coherence volume for microspheres‐in‐water systems, and has shown initial promise for biological tissue characterization. In this work, we extend these previous findings, based on single point M‐mode or two‐dimenstional slice analysis, to full three‐dimensional (3D) imaging maps of the shape parameter α of the K‐distribution PDF. After selecting a suitably sized 3D evaluation window, and verifying methodology in phantoms, the resultant parametric α images obtained in different animal tissues (rat liver and brain) show new contrasting ability not seen in conventional OCT intensity images.   相似文献   

18.
Many studies support the cardioprotective effects of folic acid (FA). We aimed to evaluate the utility of FA supplementation in preventing the development of atherosclerotic in low‐density lipoprotein receptor‐deficient (LDLR?/?) mice and to elucidate the molecular processes underlying this effect. LDLR?/? mice were randomly distributed into four groups: control group, HF group, HF + FA group and the HF + RAPA group. vascular smooth muscle cells (VSMCs) were divided into the following four groups: control group, PDGF group, PDGF + FA group and PDGF + FA + RAPA group. Blood lipid levels, oxidative stress and inflammatory cytokines were measured. Atherosclerosis severity was evaluated with oil red O staining. Haematoxylin and eosin (H&E) staining was used to assess atherosclerosis progression. Immunohistochemical staining was performed with antismooth muscle α‐actin (α‐SMA) antibodies and anti‐osteopontin (OPN) antibodies that demonstrate VSMC dedifferentiation. The protein expression of α‐SMA, OPN and mechanistic target of rapamycin (mTOR)/p70S6K signalling was detected by Western blot analysis. FA and rapamycin reduced serum levels of total cholesterol, triacylglycerol, LDL, inhibiting oxidative stress and the inflammatory response. Oil red O and H&E staining demonstrated that FA and rapamycin inhibited atherosclerosis. FA and rapamycin treatment inhibited VSMC dedifferentiation in vitro and in vivo, and FA and rapamycin attenuated the mTOR/p70S6K signalling pathway. Our findings suggest that FA attenuates atherosclerosis development and inhibits VSMC dedifferentiation in high‐fat‐fed LDLR?/? mice by reduced lipid levels and inhibiting oxidative stress and the inflammatory response through mTOR/p70S6K signalling pathway.  相似文献   

19.
Non‐invasive and quantitative estimations for the delineation of sub‐surface tumor margins could greatly aid in the early detection and monitoring of the morphological appearances of tumor growth, ensure complete tumor excision without the unnecessary sacrifice of healthy tissue, and facilitate post‐operative follow‐up for recurrence. In this study, a high‐speed, non‐invasive, and ultra‐high‐resolution spectral domain optical coherence tomography (UHR‐SDOCT) imaging platform was developed for the quantitative measurement of human sub‐surface skin mass. With a proposed robust, semi‐automatic analysis, the system can rapidly quantify lesion area and shape regularity by an en‐face‐oriented algorithm. Various sizes of nylon sutures embedded in pork skin were used first as a phantom to verify the accuracy of our algorithm, and then in vivo, feasibility was proven using benign human angiomas and pigmented nevi. Clinically, this is the first step towards an automated skin lesion measurement system.

In vivo optical coherence tomography (OCT) image of angioma (A). Thin red arrows point to a blood vessel (BV).  相似文献   


20.
Reduced levels of high-density lipoproteins (HDL) in non-obese and obese states are associated with increased risk for the development of coronary artery disease. Therefore, it is imperative to determine the mechanisms responsible for reduced HDL in obese states and, conversely, to examine therapies aimed at increasing HDL levels in these individuals. This paper examines the multiple causes for reduced HDL in obese states and the effect of exercise and diet--two non-pharmacologic therapies--on HDL metabolism in humans. In general, the concentration of HDL-cholesterol is adversely altered in obesity, with HDL-cholesterol levels associated with both the degree and distribution of obesity. More specifically, intra-abdominal visceral fat deposition is an important negative correlate of HDL-cholesterol. The specific subfractions of HDL that are altered in obese states include the HDL2, apolipoprotein A-I, and pre-beta1 subfractions. Decreased HDL levels in obesity have been attributed to both an enhancement in the uptake of HDL2 by adipocytes and an increase in the catabolism of apolipoprotein A-I on HDL particles. In addition, there is a decrease in the conversion of the pre-beta1 subfraction, the initial acceptor of cholesterol from peripheral cells, to pre-beta2 particles. Conversely, as a means of reversing the decrease in HDL levels in obesity, sustained weight loss is an effective method. More specifically, weight loss achieved through exercise is more effective at raising HDL levels than dieting. Exercise mediates positive effects on HDL levels at least partly through changes in enzymes of HDL metabolism. Increased lipid transfer to HDL by lipoprotein lipase and reduced HDL clearance by hepatic triglyceride lipase as a result of endurance training are two important mechanisms for increases in HDL observed from exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号