首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.

Background

Gene therapy has been used to treat a variety of health problems, but transfection inefficiency and the lack of safe vectors have limited clinical progress. Fabrication of a vector that is safe and has high transfection efficiency is crucial for the development of successful gene therapy. The present study aimed to synthesize chitosan‐alginate nanoparticles that can be used as carriers of the pAcGFP1‐C1 plasmid and to use these nanoparticles with an ultrasound protocol to achieve high efficiency gene transfection.

Methods

Chitosan was complexed with alginate and the pAcGFP1‐C1 plasmid at different charge ratios to create chitosan‐alginate‐DNA nanoparticles (CADNs). The average particle size and loading efficiency were measured. Plasmid DNA retardation and integrity were analysed on 1% agarose gels. The effect of CADNs and ultrasound on the efficiency of transfection of cells and subcutaneous tumors was evaluated.

Results

In the CADNs, the average size of incorporated plasmid DNA was 600–650 nm and the loading efficiency was greater than 90%. On the basis of the results of the plasmid DNA protection test, CADNs could protect the transgene from DNase I degradation. The transgene product expression could be enhanced efficiently if cells or tumor tissues were first given CADNs and then treated with ultrasound.

Conclusions

The use of CADNs combined with an ultrasound regimen is a promising method for safe and effective gene therapy. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

3.
4.
介绍了磁性纳米颗粒介导基因转染的最新研究进展,面临的主要问题以及将来的发展方向。  相似文献   

5.
6.
The introduction and expression of exogenous DNA in neurons is valuable for analyzing a range of cellular and molecular processes in the periphery, e.g., the roles of transduction‐related proteins, the impact of growth factors on development and differentiation, and the function of promoters specific to cell type. However, sensory receptor cells, particularly chemosensory cells, have been difficult to transfect. We have successfully introduced plasmids expressing green and Discosoma Red fluorescent proteins (GFP and DsRed) into rat taste buds in primary culture. Transfection efficiency increased when delaminated taste epithelium was redigested with fresh protease, suggesting that a protective barrier of extracellular matrix surrounding taste cells may normally be present. Because taste buds are heterogeneous aggregates of cells, we used α‐gustducin, neuronal cell adhesion molecule (NCAM), and neuronal ubiquitin carboxyl terminal hydrolase (PGP9.5), markers for defined subsets of mature taste cells, to demonstrate that liposome‐mediated transfection targets multiple taste cell types. After testing eight commercially available lipids, we identified one, Transfast, that is most effective on taste cells. We also demonstrate the effectiveness of two common “promiscuous” promoters and one promoter that taste cells use endogenously. These studies should permit ex vivo strategies for studying development and cellular function in taste cells. © 2005 Wiley Periodicals, Inc. J. Neurobiol, 2005  相似文献   

7.
8.
9.
10.
11.
In non‐viral gene delivery, the variance of transgenic expression stems from the low number of plasmids successfully transferred. Here, we experimentally determine Lipofectamine‐ and PEI‐mediated exogenous gene expression distributions from single cell time‐lapse analysis. Broad Poisson‐like distributions of steady state expression are observed for both transfection agents, when used with synchronized cell lines. At the same time, co‐transfection analysis with YFP‐ and CFP‐coding plasmids shows that multiple plasmids are simultaneously expressed, suggesting that plasmids are delivered in correlated units (complexes). We present a mathematical model of transfection, where a stochastic, two‐step process is assumed, with the first being the low‐probability entry step of complexes into the nucleus, followed by the subsequent release and activation of a small number of plasmids from a delivered complex. This conceptually simple model consistently predicts the observed fraction of transfected cells, the cotransfection ratio and the expression level distribution. It yields the number of efficient plasmids per complex and elucidates the origin of the associated noise, consequently providing a platform for evaluating and improving non‐viral vectors. Biotechnol. Bioeng. 2010. 105: 805–813. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Reverse microemulsion was used as a template to fabricate chitosan-alginate core-shell nanoparticles encapsulated with enhanced green fluorescent protein (EGFP)-encoded plasmids. The average size of DNA-entrapped nanoparticles measured by dynamic light scattering was increased proportionally, with the N/P ratios ranging from 5 to 20. These alginate-coated chitosan nanoparticles endocytosed by NIH 3T3 cells trigged swelling of transport vesicles which render gene escape before entering digestive endolysosomal compartment and concomitantly promote gene transfection rate. Results showed that DNA-encapsulated chitosan-alginate nanoparticles with average size of 64nm (N/P ratio of 5) could achieve the level of gene expression comparable with the one obtained by using polyethyleneimine-DNA complexes.  相似文献   

13.
14.
15.
16.
17.
18.
Previously, we reported a method to generate and validate cell cycle‐synchronized cultures of multiple mammalian suspension cell lines under near‐physiological conditions. This method was applied to elucidate the putative interdependencies of the cell cycle and recombinant protein expression in the human producer cell line HEK293s using Lipofectamine 2000 and the reporter plasmid pcDNA3.3 enhanced green fluorescent protein, destabilized using PEST sequence. A population‐resolved modeling approach was applied to quantitatively assess putative variations of cell cycle dependent expression rates based on the obtained experimental data. We could not confirm results published earlier by other groups, based on nonphysiological synchronization attempts, reporting transfection efficiency being strongly dependent on the cell cycle phase at transfection time point. On the other hand, it is demonstrated that transfection and protein expression distort the progression of the cell cycle.  相似文献   

19.
目的 :探讨bcl 2基因转染对热应激心肌细胞保护作用的机制。方法 :分离、培养乳鼠心肌细胞 ,用脂质体转染法将bcl 2基因转染入心肌细胞 ,进行热应激。用化学发光法测定bcl 2基因转染对热应激心肌细胞线粒体H ATPase合成活力的影响 ,用荧光分光光度法测定bcl 2基因转染对热应激心肌细胞Caspase3活性的影响。 结果 :bcl 2基因转染可以使 4 1℃和 4 3℃热应激心肌细胞线粒体H ATPase合成活力与转染前相比显著升高 (P <0 .0 1) ,可以使 4 1℃和 4 3℃热应激心肌细胞Caspase3活性与转染前相比显著降低 (P <0 .0 1)。结论 :bcl 2基因转染对热应激心肌细胞凋亡的保护作用可能与其保护心肌细胞线粒体H ATPase合成活力 ,并最终阻抑Caspase3活化有关  相似文献   

20.
The expression of transfected genes in mammalian cells is rapidly repressed by epigenetic mechanisms such that, within a matter of weeks, only a fraction of the cells in most clonal populations still exhibit detectable expression. This problem can become prohibitive when one wants to express two ectopically introduced genes, as is necessary to establish cell lines that harbor genes regulated by the tetracycline‐controlled transactivators. We describe an approach to establish Chinese hamster ovary (CHO) cell lines that stably induce a tet‐responsive reporter gene in all cells of a transfected clonal population. Screening of more than 100 colonies resulting from a standard co‐transfection of the tetracycline transactivator (tTA) with a green fluorescent protein (GFP) reporter plasmid failed to identify a single colony that could induce GFP in more than 20% of cells. The presence of chromatin insulator sequences, previously shown to protect some transfected genes from epigenetic silencing, moderately improved stability but was not sufficient to produce homogeneous transformants. However, when cell lines were first established in which selection could be maintained either for the expression of tTA activity (co‐transfection with a tTA‐responsive selectable marker) or the presence of tTA mRNA (bicistronic message encoding a selectable marker), these cell lines could be subsequently transfected with the GFP reporter construct, and nearly 10% of the resulting colonies exhibited stable homogeneous tet‐responsive GFP expression in 100% of the expanded clonal cell population. J. Cell. Biochem. 76:280–289, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号