首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF‐7 cells and induces apoptosis by activation of pro‐caspase‐8 followed by downstream events, including an increase in reactive oxygen species and the release of pro‐apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti‐oestrogen‐binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM‐mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro‐oxidant effects of ascorbic acid. Pre‐treatment with vitamin C caused a dose‐dependent attenuation of cytotoxicity, as measured by acridine‐orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose‐dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real‐time PCR analysis, an impressive increase in FasL and tumour necrosis factor‐α (TNF‐α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.  相似文献   

2.
Retinoic acid (RA) inhibited the in vitro growth of the mouse mast cell tumor line P815 in a dose- and time-dependent manner. The inhibition was accompanied by an increase in the amount of neutral intracellular mucopolysaccharides. Study of cell cycle kinetics showed that exposure to retinoic acid led to a slowing-down of the cell-cycle progression possibly related to a more differentiated cell population disclosed by microscopy with a lower proliferative capacity. In vivo, delays in both tumor appearance and mouse mortality were observed after injecting RA into mice bearing mastocytomas. These results suggest that RA could be of interest in the treatment of human malignant systemic mastocytosis with proliferation of immature mast cells.  相似文献   

3.
三苯氧胺对乳腺癌和宫颈癌细胞增殖的影响   总被引:5,自引:0,他引:5  
目的:研究三苯氧胺(tamoxifen,TAM)对人乳腺癌Bcap-37和宫颈癌HeLa细胞增殖的影响并探讨其可能的机制。方法:采用细胞培养、细胞计数、MTT、流式细胞术和激光共聚焦显微镜技术。结果:TAM(10^-6mol/L)使Bcap-37细胞的生长曲线下移,使HeLa细胞的生长曲线上移。TAM(10^-8~10^-6mol/L)剂量依赖性的抑制Beap-37细胞的增殖,促进HeLa细胞的增殖作用。TAM(10^-6mol/L)使Bcap-37细胞发生凋亡,凋亡率达到97.5%,而使HeLa细胞周期由G1期加速向S期转化,G1期的DNA含量由对照组的55.5%下降到加药组的32.8%,S期的DNA含量由对照组的29.0%上升到加药组的49.4%。激光共聚焦检测到TAM(10^-6mol/L)可使Bcap-37细胞和HeLa细胞内的Ca^2 浓度显著升高。结论:TAM可以通过调节细胞周期各阶段DNA含量和胞内Ca^2 浓度水平,从而调节Bcap-37细胞和HeLa细胞的增殖活动,提示使用TAM治疗乳腺癌时可能会对子宫颈产生副作用。  相似文献   

4.
5.
BACKGROUND: Our laboratory has been conducting positive control studies to evaluate the utility of micro‐computed tomography (micro‐CT) for qualitative evaluation of fetal skeletal morphology. All‐trans‐retinoic acid (atRA) was used to produce a different spectrum of defects compared to our previous studies with boric acid and hydroxyurea. METHODS: Groups of five mated Crl:CD(SD) female rats each were administered vehicle or atRA (2.5–50 mg/kg) on GD 10, and groups of four mated Dutch Belted rabbits each were dosed with vehicle or atRA (6.25–25 mg/kg) on GD 9. Cesarean sections were performed on GD 21 and 28, respectively. Following external examination the viscera were removed and fetuses scanned in a micro‐CT imaging system. Fetuses were subsequently stained with alizarin red. Skeletal morphology was evaluated by each method without the knowledge of treatment group. Total bone mineral content (BMC) of each fetus was quantitated using the micro‐CT images. RESULTS: In rats there were dose‐related increases in the incidence of extra lumbar vertebra and non‐dose‐related increases in supernumerary ribs at all dose levels. There were decreases in mean number of ossified sacrocaudal vertebra at ≥5 mg/kg, and increases in skull bone malformations at ≥10 mg/kg. Rabbits were less sensitive on a mg/kg basis since skeletal malformations and a decrease in mean number of ossified sacrocaudal vertebra were observed only in the 25‐mg/kg group. Micro‐CT evaluation detected essentially the same incidence of skeletal abnormalities as seen in alizarin red‐stained rat and rabbit fetuses. BMC analysis showed a trend toward slight decreases in atRA‐treated rats, but no notable changes in rabbits. CONCLUSIONS: These results add support to our previous work that demonstrates that micro‐CT imaging can effectively assess rat and rabbit fetal skeletal morphology. Birth Defects Res (Part B) 89:408–417, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
To investigate the alteration of nuclear matrix proteins (NMPs) during the differentiation of neuroblastoma SK‐N‐SH cells induced by retinoic acid (RA), differentiation markers were detected by immunocytochemistry and NMPs were selectively extracted and subjected to two‐dimensional gel electrophoresis analysis. Immunocytochemical observation demonstrated that the expression of neuronal markers was up‐regulated in SK‐N‐SH cells following RA treatment. Meanwhile, 52 NMPs (41 of which were identified) changed significantly during SK‐N‐SH differentiation; four of these NMPs were further confirmed by immunoblotting. This study suggests that the differentiation of neuroblastoma cells was accompanied by the altered expression of neuronal markers and NMPs. The presence of some differentially expressed NMPs was related to the proliferation and differentiation of neuroblastomas. Our results may help to reveal the relationship between NMPs and neuroblastoma carcinogenesis and reversion, as well as elucidate the regulatory principals driving neural cell proliferation and differentiation. J. Cell. Biochem. 106: 849–857, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Bone morphogenetic protein 4 (BMP4) and retinoic acid (RA) signaling are the key regulators for germ cell and meiosis induction, respectively. Gonadal tissue also provides an appropriate microenvironment for oocyte differentiation in vivo. The current study aimed to determine whether mimicking in vivo niche is more efficient for oocyte differentiation from embryonic stem (ES) cells. Here, differentiation of mouse ES cells toward oocyte‐like cells using embryoid body (EB) and monolayer protocols was induced in the presence (+BMP4) or absence (‐BMP4) of BMP4. On day 5, each group was co‐cultured with ovarian somatic cells in the presence or absence of RA (+RA or –RA) for an additional 14 days. Our results showed a significant increase in expression of meiotic markers in the +BMP4 condition in EB differentiation protocol. Further differentiation with ovarian somatic cells led to a subpopulation of oocyte‐like cell formation. Compared to the controls, the +RA condition resulted in a significant elevation of the meiotic gene expression in contrast to Oct4 that significantly decreased in both protocols. In the cells pre‐treated with BMP4 and then exposed to RA in the monolayer differentiation protocol, the gene expression levels of germ cell, Mvh, and maturation markers, Cx37, Zp2, and Gdf9, were also upregulated significantly. Therefore, it can be concluded that +BMP4 and +RA along with ovarian somatic cell co‐culture improved the rate of in vitro oocyte differentiation.  相似文献   

8.
Zarubin T  Jing Q  New L  Han J 《Cell research》2005,15(6):439-446
Although the antiestrogen agent tamoxifen has long been used to treat women with hormone receptor positive invasive breast carcinoma, the mechanisms of its action and acquired resistance to tamoxifen during treatment are largely unknown. A number of studies have revealed that over-activation of some signaling pathways can cause tamoxifen resistance; however, very little information is available regarding the genes whose loss-of-function alternation contribute to tamoxifen resistance. Here we used a forward genetic approach in vitro to generate tamoxifen resistant cells from the tamoxifen sensitive breast cancer cell line ZR-75-1, and further identified the disrupted gene in different tamoxifen resistant clones. Retinol binding protein 7, DNA polymerase-transactivated protein 3, γ-glutamyltransferase-like activity 1,slit-robo RhoGTPase-activating protein, tetraspan NET-4, HSPC194, amiloride-sensitive epithelial sodium channel gene,and Notch2, were the eight mutated genes identified in different tamoxifen resistant clones, suggesting their requirement for tamoxifen sensitivity in ZR-75-1 cells. Since the functions of these genes are not related to each other, it suggests that multiple pathways can influence tamoxifen sensitivity in breast cancer ceils.  相似文献   

9.
目的探讨不同浓度全反式维甲酸(all-trans retinoic acid,atRA)诱导P19细胞向心肌分化的效力。方法细胞分成P19细胞组,2nm/L atRA诱导组,5nm/L atRA诱导组,8nm/L atRA诱导组。各组细胞经过诱导、聚集培养、聚集体贴壁培养10天后,RT-PCR检测GATA-4,α-肌球蛋白重链(α-myosin heavychain,α-MHC)的mRNA表达,免疫荧光双标检测α-sarcomeric actin和cTnT蛋白共表达,Western blot检测cTnT的蛋白表达。结果 atRA可诱导聚集P19细胞表达GA-TA-4、a-MHC mRNA;α-sarcomeric actin和cTnT的表达和共表达增加;5nm/L atRA组,8nm/L atRA组GATA-4、a-MHCmRNA的表达量显著高于P19细胞组;5nm/L atRA组,8nm/L atRA组两种蛋白的表达和共表达量显著高于P19细胞组,以5nm/L atRA组最高,显著高于其它组。结论 atRA可诱导聚集P19细胞向心肌分化,其中5nm/L atRA组效果最好。  相似文献   

10.
11.
To investigate the effects of all-trans retinoic acid (atRA) on the barrier function in human retinal pigment epithelial cells, ARPE-19 cells were cultured on the filters as monolayer with atRA being added in the apical side. The change of epithelial permeability was observed from the measurement of transepithelial electrical resistance (TER), permeability assay, and Western Blot analysis. We discovered that atRA promoted the epithelial barrier function in vitro, and its bioavailability regulates the epithelial barrier, which is accompanied by altering expression of tight junctions (TJ)-associated proteins. Our study indicates that atRA provides barrier-positive elements to the RPE cell.  相似文献   

12.
Breast cancer is the most common malignancy in women and the appearance of distant metastases produces the death in 98% of cases. The retinoic acid receptor β (RARβ) is not expressed in 50% of invasive breast carcinoma compared with normal tissue and it has been associated with lymph node metastasis. Our hypothesis is that RARβ protein participates in the metastatic process. T47D and MCF7 breast cancer cell lines were used to perform viability assay, immunobloting, migration assays, RNA interference and immunofluorescence. Administration of retinoic acid (RA) in breast cancer cells induced RARβ gene expression that was greatest after 72 hrs with a concentration 1 μM. High concentrations of RA increased the expression of RARβ causing an inhibition of the 60% in cell migration and significantly decreased the expression of migration‐related proteins [moesin, c‐Src and focal adhesion kinase (FAK)]. The treatment with RARα and RARγ agonists did not affect the cell migration. On the contrary, the addition of the selective retinoid RARβ‐agonist (BMS453) significantly reduced cell migration comparable to RA inhibition. When RARβ gene silencing was performed, the RA failed to significantly inhibit migration and resulted ineffective to reduce moesin, c‐Src and FAK expressions. RARβ is necessary to inhibit migration induced by RA in breast cancer cells modulating the expression of proteins involved in cell migration.  相似文献   

13.
14.
BACKGROUND: Platelet-derived growth factor C (PDGF-C) was recently identified as a member of the PDGF ligand family. Some observation suggests that PDGF-C could play an important role in palatogenesis highlighted by the Pdgfc(-/-) mouse with cleft palate, which led us to examine the mechanism of PDGF-C signaling in palatogenesis. It is well known that retinoic acid (RA) is a teratogen that can effectively induce cleft palate in the mouse. Due to the critical roles of PDGF-C and RA in cleft palate, the link between cleft palate induced by RA and loss of PDGF-C was investigated. METHODS: Retarded mesenchymal proliferation is an important cause for cleft palate. To clarify the mechanism of PDGF-C in palatogenesis, we evaluated the effects of PDGF-C and anti-PDGF-C neutralizing antibody on proliferation activity in mouse embryonic palatal mesenchymal (MEPM) cells. RESULTS: Briefly, our results show PDGF-C promotes proliferation, anti-PDGF-C antibody inhibits it in MEPM cells, and RA downregulates the PDGF-C expression both at the mRNA and protein levels. CONCLUSIONS: These demonstrate that PDGF-C is a potent mitogen for MEPM cells, implying that inactivated PDGF-C by gene-targeting or reduced PDGF-C by RA may both cause inhibition of proliferation in palatal shelves, which might account for the pathogenesis of cleft palate in Pdgfc(-/-) mouse or RA-treated mouse. In conclusion, our results suggest that PDGF-C signaling is a new mechanism of cleft palate induced by RA.  相似文献   

15.
In mature cells of the sympathetic nervous system and the adrenal gland, the activity of dihydroxyphenylalanine decarboxylase (DDC) is higher than that of tyrosine hydroxylase and 3,4-dihydroxyphenylalanine (DOPA) does not accumulate in the cells. On the other hand, it is known that in some neuroblastoma cells there is a relative deficiency of DDC, resulting in accumulation and secretion of DOPA. Such a relative deficiency of DDC is a characteristic of neural cells at an early stage of neural crest development, suggesting the neuroblastoma are cells arrested in early neural crest development. If this were the case, it is possible that agents such as retinoic acid (RA) could induce neuroblastoma to differentiate into mature cells with respect to their metabolism of catecholamines. We have measured the effect of RA on the metabolism of DOPA and expression of tyrosine hydroxylase and DDC in human neuroblastoma cell lines, CHP-126, CHP-134, IMR-32, NB-59, and LA-N-5. When the cell cultures were treated with RA, they showed wide variations in response as measured by morphological change, growth inhibition, enzyme activities and DDC, but does not increase DDC relative to tyrosine hydroxylase. It is concluded that RA does not induce biochemical differentiation of the neuroblastoma into mature cells even when there are extensive morphological changes and suppression of growth rate.  相似文献   

16.
17.
18.
The effect of all-trans retinoic acid (ATRA) on leukaemia cell differentiation, proliferation and induction of apoptosis was studied by using autonomously growing blast cells isolated from eight patients with acute myeloblastic leukaemia (AML) either at diagnosis ( n=4) or at relapse (n=4). No morphological or functional differentiation induced by ATRA was observed in any of the cases studied. In cell cultures, inhibition of leukaemia cell growth by ATRA was obvious, especially in the case of clonogenic cells, and it was both time- and concentration-dependent. Induction of apoptosis was more difficult to achieve. The cells retained over 90% viability in suspension when the ATRA exposure at any of the concentrations studied was 48 h or less. When the time of exposure to ATRA was longer than 48 h, the viability of the cells decreased in a concentration-dependent manner. Apoptosis was observed morphologically in each of the AML cases with 10-5 to 10-8 M ATRA, if the incubation time of cells in ATRA was 72 h. The percentage of apoptotic cells increased with increasing ATRA concentrations from 12± 9% of 10-8 M ATRA to 78±12% of 10-5 M ATRA. The DNA electrophoretic method was able to detect apoptosis in all the AML samples exposed to 10-7 and 10-6 ATRA for 48 h and occasionally in cases where lower concentrations and longer exposure time were used. In conclusion, the present study shows that it is possible to induce apoptotic leukaemia cell death in vitro with ATRA in AML, and this effect is dependent on both concentration and exposure time.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号