首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A manner in which cells can communicate with each other is via secreted nanoparticles termed exosomes. These vesicles contain lipids, nucleic acids, and proteins, and are said to reflect the cell‐of‐origin. However, for the exosomal protein content, there is limited evidence in the literature to verify this statement. Here, proteomic assessment combined with pathway‐enrichment analysis is used to demonstrate that the protein cargo of exosomes reflects the epithelial/mesenchymal phenotype of secreting breast cancer cells. Given that epithelial‐mesenchymal plasticity is known to implicate various stages of cancer progression, the results suggest that breast cancer subtypes with distinct epithelial and mesenchymal phenotypes may be distinguished by directly assessing the protein content of exosomes. Additionally, the work is a substantial step toward verifying the statement that cell‐derived exosomes reflect the phenotype of the cells‐of‐origin.  相似文献   

4.
The endocytosis‐mediating performances of two types of peptide ligands, cell receptor binding peptide (CRBP) and cell membrane penetrating peptide (CMPP), were analyzed and compared using a common carrier of peptide ligands‐human ferritin heavy chain (hFTH) nanoparticle. Twenty‐four copies of a CMPP(human immunodeficiency virus‐derived TAT peptide) and/or a CRBP (peptide ligand with strong and specific affinity for either human integrin(αvβ3) or epidermal growth factor receptor I (EGFR) that is overexpressed on various cancer cells) were genetically presented on the surface of each hFTH nanopariticle. The quantitative level of endocytosis and intracellular localization of fluorescence dye‐labeled CRBP‐ and CMPP‐presenting nanoparticles were estimated in the in vitro cultures of integrin‐ and EGFR‐overexpressing cancer and human dermal fibroblast cells(control). From the cancer cell cultures treated with the CMPP‐ and CRBP‐presenting nanoparticles, it was notable that CRBPs resulted in quantitatively higher level of endocytosis than CMPP (TAT) and successfully transported the nanoparticles to the cytosol of cancer cells depending on concentration and treatment period of time, whereas TAT‐mediated endocytosis localized most of the nanoparticles within endosomal vesicles under the same conditions. These novel findings provide highly useful informations to many researchers both in academia and in industry who are interested in developing anticancer drug delivery systems/carriers.  相似文献   

5.
A priority in recent anti‐cancer drug development has been attaining better side‐effect profiles for potential compounds. To produce highly specific cancer therapies it is necessary to understand both the effects of the proposed compound on cancer and on normal cells comprising the rest of the human body. Thus in vitro evaluation of these compounds against non‐carcinogenic cell lines is of critical importance. One of the most recent developments in experimental anti‐cancer agents is 2‐methoxyestradiol‐bis‐sulphamate (2ME‐BM), a sulphamoylated derivative of 2‐methoxyestradiol. The aim of this study was to evaluate the in vitro effects of 2ME‐BM on cell proliferation, morphology and mechanisms of cell death in the non‐carcinogenic MCF‐12A breast epithelial cell line. The study revealed changes in proliferative capacity, morphology and cell death induction in response to 2ME‐BM exposure (24 h at 0.4 µM). Microscopy showed decreased cell density and cell death‐associated morphology (increased apoptotic characteristics), a slight increase in acidic intracellular vesicles and insignificant ultra‐structural aberrations. Mitotic indices revealed a G2M‐phase cell cycle block. This was confirmed by flow cytometry, where an increased fraction of abnormal cells and a decrease in cyclin B1 levels were observed. These results evidently demonstrate that the non‐carcinogenic MCF‐12A cell line is less susceptible when compared to 2ME‐BM‐exposed cancer cell lines previously tested. Further in vitro research into the mechanism of this potentially useful compound is warranted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Large‐scale molecular annotation of epithelial ovarian cancer (EOC) indicates remarkable heterogeneity in the etiology of that disease. This diversity presents a significant obstacle against intervention target discovery. However, inactivation of miRNA biogenesis is commonly associated with advanced disease. Thus, restoration of miRNA activity may represent a common vulnerability among diverse EOC oncogenotypes. To test this, we employed genome‐scale, gain‐of‐function, miRNA mimic toxicity screens in a large, diverse spectrum of EOC cell lines. We found that all cell lines responded to at least some miRNA mimics, but that the nature of the miRNA mimics provoking a response was highly selective within the panel. These selective toxicity profiles were leveraged to define modes of action and molecular response indicators for miRNA mimics with tumor‐suppressive characteristics in vivo. A mechanistic principle emerging from this analysis was sensitivity of EOC to miRNA‐mediated release of cell fate specification programs, loss of which may be a prerequisite for development of this disease.  相似文献   

7.
8.
Numerous genetic and epigenetic alterations cause functional changes in cell biology underlying cancer. These hallmark functional changes constitute potentially tissue‐independent anticancer therapeutic targets. We hypothesized that RNA‐Seq identifies gene expression changes that underly those hallmarks, and thereby defines relevant therapeutic targets. To test this hypothesis, we analysed the publicly available TCGA‐TARGET‐GTEx gene expression data set from the University of California Santa CruzToil recompute project using WGCNA to delineate co‐correlated ‘modules’ from tumour gene expression profiles and functional enrichment of these modules to hierarchically cluster tumours. This stratified tumours according to T cell activation, NK‐cell activation, complement cascade, ATM, Rb, angiogenic, MAPK, ECM receptor and histone modification signalling. These correspond to the cancer hallmarks of avoiding immune destruction, tumour‐promoting inflammation, evading growth suppressors, inducing angiogenesis, sustained proliferative signalling, activating invasion and metastasis, and genome instability and mutation. This approach did not detect pathways corresponding to the cancer enabling replicative immortality, resisting cell death or deregulating cellular energetics hallmarks. We conclude that RNA‐Seq stratifies tumours along some, but not all, hallmarks of cancer and, therefore, could be used in conjunction with other analyses collectively to inform precision therapy.  相似文献   

9.
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi‐pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor‐initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor‐initiating or stem‐like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.  相似文献   

10.
Cervical cancer is one of the most common malignancies of the female reproductive system. Therefore, it is critical to investigate the molecular mechanisms involved in the development and progression of cervical cancer. In this study, we stimulated cervical cancer cells with 5‐aza‐2′‐deoxycytidine (5‐Aza‐dC) and found that this treatment inhibited cell proliferation and induced apoptosis; additionally, methylation of p16 and O‐6‐methylguanine‐DNA methyltransferase (MGMT) was reversed, although their expression was suppressed. 5‐Aza‐dC inhibited E6 and E7 expression and up‐regulated p53, p21, and Rb expression. Cells transfected with siRNAs targeting p16 and MGMT as well as cells stimulated with 5‐Aza‐dC were arrested in S phase, and the expression of p53, p21, and Rb was up‐regulated more significantly. However, when cells were stimulated with 5‐Aza‐dC after transfection with siRNAs targeting p16 and MGMT, proliferation decreased significantly, and the percentage of cells in the sub‐G1 peak and in S phase was significantly increased, suggesting a marked increase in apoptosis. But E6 and E7 overexpression could rescue the observed effects in proliferation. Furthermore, X‐ray radiation caused cells to arrest in G2/M phase, but cells transfected with p16‐ and MGMT‐targeted siRNAs followed by X‐ray radiation exhibited a significant decrease in proliferation and were shifted toward the sub‐G1 peak, also indicating enhanced apoptosis. In addition, the effects of 5‐Aza‐dC and X‐ray radiation were most pronounced when MGMT expression was down‐regulated. Therefore, down‐regulation of p16 and MGMT expression enhances the anti‐proliferative effects of 5‐Aza‐dC and X‐ray radiation. This discovery may provide novel ideas for the treatment of cervical cancer.  相似文献   

11.
12.
A‐kinase‐interacting protein 1 (AKIP1) has previously been reported to act as a potential oncogenic protein in various cancers. The clinical significance and biological role of AKIP1 in gastric cancer (GC) is, however, still elusive. Herein, this study aimed to investigate the functional and molecular mechanism by which AKIP1 influences GC. AKIP1 mRNA and protein expressions in GC tissues were examined by quantitative real‐time PCR (qRT‐PCR), Western blot and immunohistochemistry. Other methods including stably transfected against AKIP1 into gastric cancer cells, wound healing, transwell assays, CCK‐8, colony formation, qRT‐PCR and Western blot in vitro and tumorigenesis in vivo were also performed. The up‐regulated expression of AKIP1 in GC specimens significantly correlated with clinical metastasis and poor prognosis in patients with GC. AKIP1 knockdown markedly suppressed GC cells proliferation, invasion and metastasis both in vitro and in vivo. In contrast, AKIP1 overexpression resulted in the opposite effects. Moreover, mechanistic analyses indicated that Slug‐induced epithelial‐mesenchymal transition (EMT) might be responsible for AKIP1‐influenced GC cells behaviour. Our findings demonstrated that high AKIP1 expression significantly correlated with clinical metastasis and unfavourable prognosis in patients with GC. Additionally, AKIP1 promoted GC cells proliferation, migration and invasion by activating Slug‐induced EMT.  相似文献   

13.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

14.

Objectives

FBXW7 acts as a tumour suppressor by targeting at various oncoproteins for ubiquitin‐mediated degradation. However, the clinical significance and the involving regulatory mechanisms of FBXW7 manipulation of NSCLC regeneration and therapy response are not clear.

Materials and Methods

Immunohistochemical staining and qRT‐PCR were applied to detect FBXW7 and Snai1 expression in 100 samples of NSCLC and matched tumour‐adjacent tissues. FBXW7 manipulation of cancer biological functions were studied by using MTT assay, immunoblotting, flow cytometry, transwells, wound healing assay, and sphere‐formation assays. Immunofluorescence and co‐immunoprecipitation were used to analyse the possible interaction between Snai1 and FBXW7.

Results

We detected the decreased FBXW7 expression in majority of the NSCLC tissues, and lower FBXW7 level was correlated with advanced TNM stage. Furthermore, those patients with decreased FBXW7 expression tend to have both poorer 5‐year survival outcomes, and shorter disease‐free survival, comparing to those with higher FBXW7 levels. Functionally, we found that FBXW7 enforcement suppressed NSCLC progression by inducing cell growth arrest, increasing chemo‐sensitivity and inhibiting Epithelial‐mesenchymal Transition (EMT) progress. Results further showed that FBXW7 could interact with Snai1 directly to degrade its expression through ubiquitylating alternation in NSCLC, which could be partially abrogated by restoring Snai1 expression.

Conclusions

FBXW7 conduction of tumour suppression was partly through degrading Snai1 directly for ubiquitylating regulation in NSCLC
  相似文献   

15.
Breast Cancer (BCa) is the most often diagnosed cancer among women who were in the late 1940’s. Breast cancer growth is largely dependent on the expression of estrogen and progesterone receptor. Breast cancer cells may have one, both, or none of these receptors. The treatment for breast cancer may involve surgery, hormonal therapy (Tamoxifen, an aromatase inhibitor, etc.) and oral chemotherapeutic drugs. The molecular docking technique reported the findings on the potential binding modes of the 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives with the estrogen receptor (PDB ID: 3ERT). The 1,3,4‐oxadiazole derivatives 4a – 4j have been synthesized and described by spectroscopic method. 2‐(2‐Bromo‐6‐nitrophenyl)‐5‐(4‐bromophenyl)‐1,3,4‐oxadiazole ( 4c ) was reconfirmed by single‐crystal XRD. All the compounds have been tested in combination with generic Imatinib pharmaceutical drug against breast cancer cell lines isolated from Caucasian woman MCF‐7, MDA‐MB‐453 and MCF‐10A non‐cancer cell lines. The compounds with the methoxy (in 4c ) and methyl (in 4j ) substitution were shown to have significant cytotoxicity, with 4c showing dose‐dependent activation and decreased cell viability. The mechanism of action was reported by induced apoptosis and tested by a DNA enzyme inhibitor experiment (ELISA) for Methyl Transferase. Molecular dynamics simulations were made for hit molecule 4c to study the stability and interaction of the protein?ligand complex. The toxicity properties of ADME were calculated for all the compounds. All these results provide essential information for further clinical trials.  相似文献   

16.
Alpha B‐crystallin (CRYAB) is overexpressed in a variety of cancers. However, little is known about its specific function and regulatory mechanism in gastric cancer. Here, we first explore the role of CRYAB in gastric cancer progression and metastasis. The expression of CRYAB was determined by western blot and immunohistochemistry in gastric cancer tissues. Besides, methods including stably transfected against CRYAB into gastric cancer cells, western blot, migration and invasion assays in vitro and metastasis assay in vivo were also conducted. The expression of CRYAB is up‐regulated in gastric cancer tissues compared with matched normal tissues. High expression level of CRYAB is closely correlated with cancer metastasis and shorter survival time in patients with gastric cancer. Additionally, CRYAB silencing significantly suppresses epithelial‐mesenchymal transition (EMT), migration and invasion of gastric cancer cells in vitro and in vivo, whereas CRYAB overexpression dramatically reverses these events. Mechanically, CRYAB facilitates gastric cancer cells invasion and metastasis via nuclear factor‐κ‐gene binding (NF‐κB)‐regulated EMT. These findings suggest that CRYAB expression predicts a poor prognosis in patients with gastric cancer. Besides, CRYAB contributes to gastric cancer cells migration and invasion via EMT, mediated by the NF‐κB signalling pathway, thus possibly providing a novel therapeutic target for gastric cancer.  相似文献   

17.
18.
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi‐)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti‐cancer therapeutics. Peptide NK‐2, derived from porcine NK‐lysin, was originally discovered due to its broad‐spectrum antimicrobial activities. Today, also potent anti‐cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non‐abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK‐2 and structurally improved anti‐cancer variants thereof against two patient‐derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle‐based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface‐exposed phosphatidylserine is of crucial importance for the activity of peptide NK‐2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Cancer‐related fatigue (CRF) is subjective and has wide inter‐individual variability. Given that leptin is commonly associated with fatigue syndrome, its use as a potential biomarker for CRF is being investigated. The primary objective of this study was to evaluate the association between leptin and CRF in early‐stage breast cancer patients receiving chemotherapy. In a prospective cohort study, patients completed assessments at baseline (T1), during chemotherapy (T2) and after chemotherapy (T3). Levels of plasma leptin and adipokines were measured using a Luminex bead‐immunoassay and CRF was measured using the Multi‐Dimensional Fatigue Symptom Inventory‐Short Form (MFSI‐SF). Data were analysed longitudinally using a generalised estimating equation incorporating clinically relevant parameters and pro‐inflammatory adipokines. The analysis included 136 patients (mean age ± SD = 51.5 ± 8.8 years; 69.1% receiving anthracycline‐based chemotherapy). More patients experienced CRF at T3 (23.8%) than at T2 (13.8%) compared to baseline. An increase was observed in the median plasma leptin level at T2, followed by a decrease at T3 (T1: 4.07 ng/mL, T2: 4.95 ng/mL and T3: 3.96 ng/mL). In the multivariate model, the change in leptin levels over time was significantly associated with the total MFSI‐SF score (β = ?0.15, P = 0.003) after adjusting for the tumour necrosis factor‐α (TNF‐α) level, anxiety, depression, insomnia, age, menopausal status and type of chemotherapy. This is the first study to report leptin as a biomarker that predicts the onset of CRF over time. Future studies are required to validate the findings.  相似文献   

20.
The purpose of this study was to determine the correlation between over‐expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio‐sensitivity of non‐small cell lung carcinoma (NSCLC) cells. 3‐[4,5‐dimethylthylthiazol‐2‐yl]‐2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V‐Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X‐ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF‐κB. Finally, to examine the effect of shNRP1 on proliferation and radio‐sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1‐A549) showed a significant reduction in colony‐forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA‐mediated NRP1 inhibition also significantly enhanced the radio‐sensitivity of NSCLC cells both in vitro and in vivo. The over‐expression of NRP1 was correlated with growth, survival and radio‐resistance of NSCLC cells via the VEGF‐PI3K‐ NF‐κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio‐sensitization of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号