首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthetic peptide octarphin (TPLVTLFK) corresponding to the sequence 12–19 of β‐endorphin, a selective agonist of nonopioid β‐endorphin receptor, was labeled with tritium to a specific activity of 29 Ci/mmol. [3H]Octarphin was found to bind to high‐affinity naloxone‐insensitive binding sites on membranes isolated from rat adrenal cortex (Kd = 35.7 ± 2.3 nM, Bmax = 41.0 ± 3.6 pmol/mg protein). The binding specificity study revealed that these binding sites were insensitive not only to naloxone but to α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin as well. At the same time, the [3H]octarphin‐specific binding with adrenal cortex membranes was inhibited by unlabeled β‐endorphin (Ki = 32.9 ± 3.8 nM). Octarphin at concentrations of 10?9–10?6 M was found to inhibit the adenylate cyclase activity in adrenocortical membranes, whereas intranasal injection of octarphin at doses of 5 and 20 µg/rat was found to reduce the secretion of corticosterone from the adrenals to the bloodstream. Thus, octarphin decreases the adrenal cortex functional activity through the high affinity binding to nonopioid receptor of β‐endorphin. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The effects of β adrenergic receptors (β‐ARs) and p38 mitogen‐activated protein kinases (MAPK) pathways on cardiosphere‐derived cells (CDCs) are largely unknown. This study aimed to investigate the roles of β‐ARs and p38MAPK pathways on the proliferation, apoptosis, and differentiation capacity of CDCs. The CDCs were treated with β1‐AR blocker (Met group), β2‐AR antagonist (ICI group), and p38MAPK inhibitor (SB group), non‐selective β‐AR blocker (PRO group), and β‐AR agonist (ISO group). The viability, apoptotic rate and differentiation status of CDCs were determined by MST‐1 assay, flow cytometery, and Western blot, respectively. The CDCs viability significantly reduced in ICI group (all P < 0.05), and SB group had a significant high viability after 48 h treatment (P < 0.05). Compared with control group, all treated groups had a low apoptotic rate. After treatment for 72 h, ISO treatment elevated the expression of Nkx2.5, and could partially or fully attenuate the inhibitory effects of β‐AR antagonists and/or p38MAPK inhibitor. A similar overall trend of protein expression levels among all groups could be observed between protein pairs of cTnT and β1‐AR as well as c‐Kit and β2‐AR, respectively. These results suggested that β‐ARs and p38MAPK signaling pathways play crucial roles in the proliferation and differentiation of CDCs. Our findings should be helpful for better understanding the molecular mechanism underlying the physiological processes of CDCs.  相似文献   

3.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

4.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Selective agonist of nonopioid β‐endorphin receptor decapeptide immunorphin (SLTCLVKGFY) was labeled with tritium (the specific activity of 24 Ci/mmol). [3H]Immunorphin was found to bind to nonopioid β‐endorphin receptor of mouse peritoneal macrophages (Kd = 2.0 ± 0.1 nM ). The [3H]immunorphin specific binding with macrophages was inhibited by unlabeled β‐endorphin (Ki = 2.9 ± 0.2 nM ) and was not inhibited by unlabeled naloxone, α‐endorphin, γ‐endorphin and [Met5]enkephalin (Ki > 10 µM ). Thirty fragments of β‐endorphin have been synthesized and their ability to inhibit the [3H]immunorphin specific binding to macrophages was studied. Unlabeled fragment 12–19 (TPLVTLFK, the author's name of the peptide octarphin) was found to be the shortest peptide possessing practically the same inhibitory activity as β‐endorphin (Ki = 3.1 ± 0.3 nM ). The peptide octarphin was labeled with tritium (the specific activity of 28 Ci/mmol). [3H]Octarphin was found to bind to macrophages with high affinity (Kd = 2.3 ± 0.2 nM ). The specific binding of [3H]octarphin was inhibited by unlabeled immunorphin and β‐endorphin (Ki = 2.4 ± 0.2 and 2.7 ± 0.2 nM , respectively). Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

7.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   

9.
10.
To investigate the structural role played by isostructural unbranched alkyl‐chains on the conformational ensemble and stability of β‐turn structures, the conformational properties of a designed model peptide: Plm‐Pro‐Gly‐Pda ( 1 , Plm: H3C—(CH2)14—CONH—; Pda: —CONH— (CH2)14—CH3) have been examined and compared with the parent peptide: Boc‐Pro‐Gly‐NHMe ( 2 , Boc: tert‐butoxycarbonyl; NHMe: N‐methylamide). The characteristic 13C NMR chemical‐shifts of the Pro Cβ and Cγ resonances ascertained the incidence of an all‐trans peptide‐bond in low polarity deuterochloroform solution. Using FTIR and 1H NMR spectroscopy, we establish that apolar alkyl‐chains flanking a β‐turn promoting Pro‐Gly sequence impart definite incremental stability to the well‐defined hydrogen‐bonded structure. The assessment of 1H NMR derived thermodynamic parameters of the hydrogen‐bonded amide‐NHs via variable temperature indicate that much weaker hydrophobic interactions do contribute to the stability of folded reverse turn structures. The far‐UV CD spectral patterns of 1 and 2 in 2,2,2‐trifluoroethanol are consistent with Pro‐Gly specific type II β‐turn structure, concomitantly substantiate that the flanking alkyl‐chains induce substantial bias in enhanced β‐turn populations. In view of structural as well as functional importance of the Pro‐Gly mediated secondary structures, besides biochemical and biological significance of proteins lipidation via myristoylation or palmytoilation, we highlight potential convenience of the unbranched Plm and Pda moieities not only as main‐chain N‐ and C‐terminal protecting groups but also to mimic and stabilize specific isolated secondary and supersecondary structural components frequently observed in proteins and polypeptides. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 419–426, 2013.  相似文献   

11.
The aim of this study was to investigate the mechanism of the cytotoxic effect of β‐bungarotoxin (β‐BuTX), a presynaptic neurotoxin, on rat cerebellar granule neurons (CGNs). The maturation of CGNs is characterized by the prominent dense neurite networks that became fragmented after treatment with β‐BuTX, and this cytotoxic effect of β‐BuTX on CGNs was in a dose‐ and time‐dependant manner. The cytotoxic effect of β‐BuTX was found to be more potent than other toxins, such as α‐BuTX, cardiotoxin, melittin, and Naja naja atra venom phospholipase A2. Meanwhile, undifferentiated neuroblastoma neuronal cell lines, IMR‐32 and SK‐N‐MC, and astrocytes were found to be resistant to β‐BuTX. These results indicated that only the mature CGNs were sensitive to β‐BuTX insults. None of the following chemicals: antioxidants, K+‐channel activator, K+‐channel antagonists, intracellular Ca2+ chelator, Ca2+‐channel blockers, NMDA receptor antagonists, and nitric oxide synthase inhibitor tested, were able to reduce β‐BuTX‐induced cytotoxicity. However, secretory type phospholipase A2 inhibitors (glycyrrhizin and aristolochic acid) and a free radical scavenger (5,5‐dimethyl pyrroline N‐oxide, DMPO) could attenuate not only β‐BuTX‐induced cytotoxicity but also ROS production and caspase‐3 activation. These data suggest that phospholipase A2 activity of β‐BuTX may be responsible for free radical generation and caspase‐3 activation that accounts for the observed cytotoxic effect. It is proposed that the CGNs can be a useful tool for studying interactions of the molecules on neuronal plasma membrane with β‐BuTX that mediates the specific cytotoxicity. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

12.
13.
The β2‐AR (β2‐adrenergic receptor) is an important target for respiratory and CVD (cardiovascular disease) medications. Clinical studies suggest that N‐terminal polymorphisms of β2‐AR may act as disease modifiers. We hypothesized that polymorphisms at amino acids 16 and 27 result in differential trafficking and down‐regulation of β2‐AR variants following β‐agonist exposure. The functional consequences of the four possible combinations of these polymorphisms in the human β2‐AR (designated β2‐AR‐RE, β2‐AR‐GE, β2‐AR‐RQ and β2‐AR‐GQ) were studied using site‐directed mutagenesis and recombinant expression in HEK‐293 cells (human embryonic kidney cells). Ligand‐binding assays demonstrated that after 24 h exposure to 1 μM isoprenaline, isoforms with Arg162‐AR‐RE and β2‐AR‐RQ) underwent increased down‐regulation compared with isoforms with Gly162‐AR‐GE and β2‐AR‐GQ). Consistent with these differences in down‐regulation between isoforms, prolonged isoprenaline treatment resulted in diminished cAMP response to subsequent isoprenaline challenge in β2‐AR‐RE relative to β2‐AR‐GE. Confocal microscopy revealed that the receptor isoforms had similar co‐localization with the early endosomal marker EEA1 following isoprenaline treatment, suggesting that they had similar patterns of internalization. None of the isoforms exhibited significant co‐localization with the recycling endosome marker Rab11 in response to isoprenaline treatment. Furthermore, we found that prolonged isoprenaline treatment led to a higher degree of co‐localization of β2‐AR‐RE with the lysosomal marker LAMP1 (lysosome‐associated membrane protein 1) compared with that of β2‐AR‐GE. Taken together, these results indicate that a mechanism responsible for differential responses of these receptor isoforms to the β‐agonist involves differences in the efficiency with which agonist‐activated receptors are trafficked to the lysosomes for degradation, or differences in degradation in the lysosomes.  相似文献   

14.
Mimicry of structural motifs is a common feature in proteins. The 10‐membered hydrogen‐bonded ring involving the main‐chain C?O in a β‐turn can be formed using a side‐chain carbonyl group leading to Asx‐turn. We show that the N? H component of hydrogen bond can be replaced by a Cγ‐H group in the side chain, culminating in a nonconventional C? H···O interaction. Because of its shape this β‐turn mimic is designated as ω‐turn, which is found to occur ~three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C? H···O interaction occurring between the terminal residues, constraining the torsion angles ?i + 1, ψi + 1, ?i + 2 and χ1(i + 2) (using the interacting Cγ atom). Based on these angles there are two types of ω‐turns, each of which can be further divided into two groups. Cβ‐branched side‐chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal‐binding sites. N‐linked glycosylation occurs at the consensus pattern Asn‐Xaa‐Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω‐turn, which may be the recognition site for protein modification. Location between two β‐strands is the most common occurrence in protein tertiary structure, and being generally exposed ω‐turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. Proteins 2015; 83:203–214. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

17.
Agonist‐triggered downregulation of β‐adrenergic receptors (ARs) constitutes vital negative feedback to prevent cellular overexcitation. Here, we report a novel downregulation of β2AR signaling highly specific for Cav1.2. We find that β2‐AR binding to Cav1.2 residues 1923–1942 is required for β‐adrenergic regulation of Cav1.2. Despite the prominence of PKA‐mediated phosphorylation of Cav1.2 S1928 within the newly identified β2AR binding site, its physiological function has so far escaped identification. We show that phosphorylation of S1928 displaces the β2AR from Cav1.2 upon β‐adrenergic stimulation rendering Cav1.2 refractory for several minutes from further β‐adrenergic stimulation. This effect is lost in S1928A knock‐in mice. Although AMPARs are clustered at postsynaptic sites like Cav1.2, β2AR association with and regulation of AMPARs do not show such dissociation. Accordingly, displacement of the β2AR from Cav1.2 is a uniquely specific desensitization mechanism of Cav1.2 regulation by highly localized β2AR/cAMP/PKA/S1928 signaling. The physiological implications of this mechanism are underscored by our finding that LTP induced by prolonged theta tetanus (PTT‐LTP) depends on Cav1.2 and its regulation by channel‐associated β2AR.  相似文献   

18.
19.
20.
β‐arrestin 1 and 2 (also known as arrestin 2 and 3) are homologous adaptor proteins that regulate seven‐transmembrane receptor trafficking and signalling. Other proteins with predicted ‘arrestin‐like’ structural domains but lacking sequence homology have been indicated to function like β‐arrestin in receptor regulation. We demonstrate that β‐arrestin2 is the primary adaptor that rapidly binds agonist‐activated β2 adrenergic receptors (β2ARs) and promotes clathrin‐dependent internalization, E3 ligase Nedd4 recruitment and ubiquitin‐dependent lysosomal degradation of the receptor. The arrestin‐domain‐containing (ARRDC) proteins 2, 3 and 4 are secondary adaptors recruited to internalized β2AR–Nedd4 complexes on endosomes and do not affect the adaptor roles of β‐arrestin2. Rather, the role of ARRDC proteins is to traffic Nedd4–β2AR complexes to a subpopulation of early endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号