首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
miR‐222 plays an important role in erythroid differentiation, but the potential targets of miR‐222 in the regulation of erythroid differentiation remain to be determined. The target genes of miR‐222 were identified by proteomics combined with bioinformatics analysis in this study. Thirteen proteins were upregulated, and 13 were downregulated in K562 cells following transfection with miR‐222 inhibitor for 24 and 48 hours. Among these proteins, BLVRA and CRKL were upregulated after transfection of miR‐222 inhibitor in K562 cells and human CD34+ HPCs. Moreover, miR‐222 mimics reduced and miR‐222 inhibitor enhanced the mRNA and protein levels of both BLVRA and CRKL. Luciferase assay showed that miR‐222 directly targeted 3′‐UTR of BLVRA and CRKL. In addition, overexpression of either BLVRA or CRKL or both increased the erythroid differentiation of K562 cells, while silencing of either BLVRA or CRKL or both by siRNA significantly attenuated hemin‐induced erythroid differentiation of K562 cells. Our results indicated that BLVRA and CRKL are targets of miR‐222.  相似文献   

10.
Wan YM  Ma YJ  Zhang XY  Zeng B  Wang HH  Li YH 《生理学报》2005,57(3):384-388
为研究模拟失重对成骨细胞细胞外基质mRNA的影响,实验采用离体人鼠成骨细胞水平轴回转模拟失重效应,用RT-PCR技术分别检测成骨细胞中骨桥素(osteopontin,OPN)及骨粘连蛋白(osteonectin,ON)mRNA的水平,并观察细胞培养液中碱性磷酸酶(alkaline phosphatase,ALP)的活性和骨钙素(osteocalcim, BGP)含量的变化。结果观察到,分别回转24、48、72h后,OPN、ON的mRNA含量及细胞培养液中BGP含量均显著下降,细胞培养液中ALP活性也呈下降趋势。上述结果表明,模拟失重后成骨细胞OPN及ON的表达下调,进而使BGP及ALP的分泌量减少,从而导致骨钙化能力降低,提示模拟失重导致的细胞外基质蛋白基因表达下降可能是模拟火重引起骨丢失的原因之一。  相似文献   

11.
12.
13.
14.
15.
BMPs (Bone morphogenetic proteins) such as BMP2 and BMP7 have been used about one decade as bone anabolic agents in orthopaedics. The BMP receptor ACVR1, which is a key receptor of BMP7, is expressed in bone. The pathological role of ACVR1 in humans has been reported: a point mutation in ACVR1 can cause fibrodysplasia ossificans progressiva (FOP) in which ectopic ossification occurs in skeletal muscles and deep connective tissues. The physiological function of ACVR1 in bone, however, is totally unknown. The purpose of this study is to investigate the endogenous role of ACVR1 in osteoblasts, one of the most dominant cell-types in bone. We generated Acvr1-null mice in an osteoblast-specific manner using an inducible Cre-loxP system. Surprisingly, we found that bone mass was increased in the Acvr1-null mice. Interestingly, canonical Wnt signaling was increased and expression levels of Wnt inhibitors Sost and Dkk1 were both suppressed in the null bones during the developmental stages. In addition, we confirmed that expression levels of both Sost and Dkk1 were upregulated by BMP7 dose-dependently in vitro. These results suggest that the Acvr1-deficiency can increase bone mass by activating Wnt signaling in which both Sost and Dkk1 expression levels are diminished. This study leads to a new concept of the BMP7-ACVR1-SOST/DKK1 axis in osteoblasts, in which BMP7 signaling through ACVR1 can reduce Wnt signaling via SOST/DKK1 and then inhibits osteogenesis. Although this concept is beyond the current known function of BMP7, it can explain the varied outcomes of BMP7 treatment. We believe BMP signaling can exhibit multifaceted effects by context and cell type.  相似文献   

16.
17.
Atrial fibrillation (AF) is the most common type of arrhythmia in cardiovascular diseases. Atrial fibrosis is an important pathophysiological contributor to AF. This study aimed to investigate the role of the clustered miR‐23b‐3p and miR‐27b‐3p in atrial fibrosis. Human atrial fibroblasts (HAFs) were isolated from atrial appendage tissue of patients with sinus rhythm. A cell model of atrial fibrosis was achieved in Ang‐II‐induced HAFs. Cell proliferation and migration were detected. We found that miR‐23b‐3p and miR‐27b‐3p were markedly increased in atrial appendage tissues of AF patients and in Ang‐II‐treated HAFs. Overexpression of miR‐23b‐3p and miR‐27b‐3p enhanced the expression of collagen, type I, alpha 1 (COL1A1), COL3A1 and ACTA2 in HAFs without significant effects on their proliferation and migration. Luciferase assay showed that miR‐23b‐3p and miR‐27b‐3p targeted two different sites in 3?‐UTR of transforming growth factor (TGF)‐β1 receptor 3 (TGFBR3) respectively. Consistently, TGFBR3 siRNA could increase fibrosis‐related genes expression, along with the Smad1 inactivation and Smad3 activation in HAFs. Additionally, overexpression of TGFBR3 could alleviate the increase of COL1A1, COL3A1 and ACTA2 in HAFs after transfection with miR‐23b‐3p and miR‐27b‐3p respectively. Moreover, Smad3 was activated in HAFs in response to Ang‐II treatment and inactivation of Smad3 attenuated up‐regulation of miR‐23b‐3p and miR‐27b‐3p in Ang‐II‐treated HAFs. Taken together, these results suggest that the clustered miR‐23b‐3p and miR‐27b‐3p consistently promote atrial fibrosis by targeting TGFBR3 to activate Smad3 signalling in HAFs, suggesting that miR‐23b‐3p and miR‐27b‐3p are potential therapeutic targets for atrial fibrosis.  相似文献   

18.
We previously found that miR‐29a was significantly downregulated in Ankylosing spondylitis (AS) patients, a chronic inflammatory disease associated with bone metabolic disorder, however, the underlying mechanism remains unclear. In this study, we demonstrated that miR‐29a regulates tumor necrosis factor‐α (TNF‐α) mediated bone loss mainly by targeting DKK1 and GSK3β, thus activating the Wnt/β‐catenin pathway. Our findings may provide new insight into the pathogenesis of the bone metabolism disorder in inflammation environment and provide promising therapeutic target.  相似文献   

19.
20.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号