首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous study has shown that thiazolidinediones (TZDs) improved endothelium insulin resistance (IR) induced by high glucose concentration (HG)/hyperglycaemia through a PPARγ‐dependent‐NFκB trans‐repression mechanism. However, it is unclear, whether changes in PPARγ expression affect the endothelium IR and what the underlying mechanism is. In the present study, we aimed to address this issue. HG‐treated human umbilical vascular endothelial cells (HUVEC) were transfected by either PPARγ‐overexpressing (Ad‐PPARγ) or PPARγ‐shRNA‐containing (Ad‐PPARγ‐shRNA) adenoviral vectors. Likewise, the rats fed by high‐fat diet (HFD) were infected by intravenous administration of Ad‐PPARγ or Ad‐PPARγ‐shRNA. The levels of nitric oxide (NO), endothelin‐1 (ET‐1) and cytokines (TNFα, IL‐6, sICAM‐1 and sVCAM‐1) and the expression levels of PPARγ, eNOS, AKT, p‐AKT, IKKα/β and p‐IKKα/β and IκBα were examined; and the interaction between PPARγ and NFκB‐P65 as well as vascular function were evaluated. Our present results showed that overexpression of PPARγ notably increased the levels of NO, eNOS, p‐AKT and IκBα as well as the interaction of PPARγ and NFκB‐P65, and decreased the levels of ET‐1, p‐IKKα/β, TNFα, IL‐6, sICAM‐1 and sVCAM‐1. In contrast, down‐expression of PPARγ displayed the opposite effects. The results demonstrate that the overexpression of PPARγ improves while the down‐expression worsens the endothelium IR via a PPARγ‐mediated NFκB trans‐repression dependent manner. The findings suggest PPARγ is a potential therapeutic target for diabetic vascular complications.  相似文献   

3.
Adiponectin is an important insulin‐sensitizing adipokine with multiple beneficial effects on obesity‐associated medical complications. It is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). Each oligomeric form of adiponectin exerts non‐overlapping biological functions, with the HMW oligomer possessing the most potent insulin‐sensitizing activity. In this study, we reported that emodin, a natural product and active ingredient of various Chinese herbs, activates AMPK in both 3T3‐L1 adipocytes and 293T cells. Activation of AMPK by emodin promotes the assembly of HMW adiponectin and increases the ratio of HMW adiponectin to total adiponectin in 3T1‐L1 adipocytes. Emodin might activate AMPK by an indirect mechanism similar to berberine. We also found that emodin activates PPARγ and promotes differentiation and adiponectin expression during differentiation of 3T3‐L1 preadipocytes. Therefore, emodin is a novel AMPK activator with PPARγ‐agonist activity. Our results demonstrate that the effects of emodin on adiponectin expression and multimerization are the ultimate effects resulting from both AMPK activation and PPARγ activation. The dual‐activity makes emodin or the derivatives potential drug candidates for the treatment of type 2 diabetes and other obesity‐related metabolic diseases. J. Cell. Biochem. 113: 3547–3558, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
Lipophilic insect hormones and their analogs affect mammalian physiology by regulating the expression of metabolic genes. Therefore, we determined the effect of fenoxycarb, a juvenile hormone analog, on lipid metabolism in adipocytes. Here, we demonstrated that fenoxycarb dose‐dependently promoted lipid accumulation in 3T3‐L1 adipocytes during adipocyte differentiation and that its lipogenic effect was comparable to that of rosiglitazone, a well‐known ligand for peroxisome proliferator‐activated receptor gamma (PPARγ). Furthermore, fenoxycarb stimulated PPARγ activity without affecting other nuclear receptors, such as liver X receptor (LXR), farnesoid X‐activated receptor (FXR) and Nur77. In addition, fenoxycarb treatment increased the expression of PPARγ and fatty acid transporter protein 1 (FATP1) in 3T3‐L1 adipocytes, suggesting that fenoxycarb may facilitate adipocyte differentiation by enhancing PPARγ signaling, the master regulator of adipogenesis. Together, our results suggest that fenoxycarb promoted lipid accumulation in adipocytes, in part, by stimulating PPARγ.  相似文献   

7.
8.
Here, we show that Elovl3 (elongation of very long-chain fatty acids 3) was involved in the regulation of the progression of adipogenesis through activation of peroxisome proliferator-activated receptor (PPAR)γ in mouse adipocytic 3T3-L1 cells. The expression of the Elovl3 gene increased during adipogenesis, the expression pattern of which was similar to that of the PPARγ gene. Troglitazone, a PPARγ agonist, enhanced Elovl3 expression in adipocytes, as it did that of other PPARγ target genes. Promoter-reporter analysis demonstrated that three PPAR-responsive elements in the Elovl3 gene promoter had the potential to activate its expression in 3T3-L1 cells. Moreover, a chromatin immunoprecipitation assay revealed that PPARγ bound these PPAR-responsive elements of the Elovl3 promoter. When the Elovl3 mRNA level was suppressed by its siRNAs, the level of intracellular triglycerides was significantly decreased, and the expression levels of adipogenic, lipolytic, and lipogenic genes were also repressed. In a mammalian two-hybrid assay, C18:1 and C20:1 very long-chain fatty acids (VLCFAs), which are the products of Elovl3 and activated PPARγ function. In addition, these same VLCFAs could prevent the Elovl3 siRNA-mediated suppression of adipogenesis by enhancing the expression of adipogenic, lipolytic, and lipogenic genes in adipocytes. Moreover, this VLCFAs-mediated activation was repressed by a PPARγ antagonist. These results indicate that the expression of the Elovl3 gene was activated by PPARγ during adipogenesis. Elovl3-produced C18:1 and C20:1 VLCFAs acted as agonists of PPARγ in 3T3-L1 cells. Thus, the Elovl3-PPARγ cascade is a novel regulatory circuit for the regulation of adipogenesis through improvement of PPARγ function in adipocytes.  相似文献   

9.
10.
In adipose tissue of obese mice, the expression of catalase, an anti-oxidant enzyme, significantly decreases, which may cause insufficient elimination of hydrogen peroxide, but it does not in liver or skeletal muscle. However, the precise regulatory mechanism of catalase expression in adipocytes has not been fully defined. Here, we demonstrated that adipose tissues highly expressed catalase on the level comparable to liver and kidney, and treatment of mice with PPARγ agonist significantly enhanced catalase expression in adipose tissue but not in liver. In 3T3-L1 cells, mRNA expression of catalase was up-regulated by the induction for adipose differentiation, and down-regulated by TNFα, in parallel with alterations in PPARγ expression. PPARγ agonist significantly enhanced catalase mRNA and activity. Furthermore, we newly identified a remote enhancer region containing two functional PPARγ binding sites in mouse catalase gene. Collectively, our findings suggest that PPARγ plays a crucial role in the expression of catalase in adipocytes.  相似文献   

11.
12.
13.
14.
15.
FATP1 plays an important role in the trafficking of free fatty acids in adipocytes, however, its precise function and relationship with other fatty acid transporters all remain poorly understood. In this study, FATP1 gene silencing was induced by transfecting siRNA of target sequence into chicken preadipocytes, then the expression of FABP was found down-regulated while the expression of FAT was raised. In addition, differential inhibition of the cells was observed and the expressions of PPARγ and C/EBPα were found down-regulated. Moreover, the silencing also induced the down-regulation of FAS and inhibited the adipogenesis in adipocytes. Of specific interest here was that FATP1 silencing significantly improved the expressions and activities of cell apoptotic factors Caspases 3 and BCL2 associated X protein (Bax). Consequently, FATP1 deficiency prevented the differentiation while induced apoptosis in chicken preadipocytes.  相似文献   

16.
17.
分别以0μmol/L(对照组)、10μmol/L(低剂量组),20μmol/L(中等剂量组),50μmol/L,100μmol/L(高剂量组)的白藜芦醇(Resveratrol,RES)处理体外培养1~3日龄健康仔猪前体脂肪细胞,采用MTT比色法检测细胞活性及增殖状况;油红O染色化学比色法定量分析细胞内脂肪生成及细胞分化程度;RT-PCR法分析Sirt1(sirtuin1)mRNA表达情况,探讨Sirt1对猪前体脂肪细胞增殖分化的影响及其分子机制。结果表明,脂肪细胞经RES处理后,各组MTT和油红O染色测得的光密度值(OD值)均低于对照组,50μmol/L,100μmol/L组在96~120h作用极显著(P<0.01),与中低剂量组差异显著(P<0.05);以20μmol/L,100μmol/LRES处理细胞后,Sirt1mRNA表达量随细胞分化的进行而逐渐升高,100μmol/L组均显著高于对照组和20μmol/L组(P<0.05)。RES对猪前体脂肪细胞增殖分化均有一定抑制作用,高剂量RES(50μmol/L和100μmol/L)可显著减少细胞内脂肪的合成、抑制脂肪细胞增殖与分化,Sirt1mRNA表达量显著升高可能是RES抑制细胞分化的重要原因之一。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号