首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem (hES) cells have the capacities to propagate for extended periods and to differentiate into cell types from all three germ layers both in vitro and in vivo. These characteristics of self‐renewal and pluripotency enable hES cells having the potential to provide an unlimited supply of different cell types for tissue replacement, drug screening, and functional genomics studies. The hES‐T3 cells with normal female karyotype cultured on either mouse embryonic fibroblasts (MEF) in hES medium (containing 4 ng/ml bFGF) (T3MF) or feeder‐free Matrigel in MEF‐conditioned medium (supplemented with additional 4 ng/ml bFGF) (T3CM) were found to express very similar profiles of mRNAs and microRNAs, indicating that the unlimited self‐renewal and pluripotency of hES cells can be maintained by continuing culture on these two conditions. However, the expression profiles, especially microRNAs, of the hES‐T3 cells cultured on Matrigel in hES medium supplemented with 4 ng/ml bFGF and 5 ng/ml activin A (T3BA) were found to be different from those of T3MF and T3CM cells. In T3BA cells, four hES cell‐specific microRNAs miR‐372, miR‐302d, miR‐367, and miR‐200c, as well as three other microRNAs miR‐199a, miR‐19a, and miR‐217, were found to be up‐regulated, whereas five miRNAs miR‐19b, miR‐221, miR‐222, let‐7b, and let‐7c were down‐regulated by activin A. Thirteen abundantly differentially expressed mRNAs, including NR4A2, ERBB4, CXCR4, PCDH9, TMEFF2, CD24, and COX6A1 genes, targeted by seven over‐expressed miRNAs were identified by inverse expression levels of these seven microRNAs to their target mRNAs in T3BA and T3CM cells. The NR4A2, ERBB4, and CXCR4 target genes were further found to be regulated by EGF and/or TNF. The 50 abundantly differentially expressed genes targeted by five under‐expressed miRNAs were also identified. The abundantly expressed mRNAs in T3BA and T3CM cells were also analyzed for the network and signaling pathways, and roles of activin A in cell proliferation and differentiation were found. These findings will help elucidate the complex signaling network which maintains the self‐renewal and pluripotency of hES cells. J. Cell. Biochem. 109: 93–102, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Type 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, making it important to find a new alternative source of the islet beta cells to replace the damaged cells. hES (human embryonic stem) cells possess unlimited self‐renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES‐T3 cells with normal female karyotype were first differentiated into EBs (embryoid bodies) and then induced to generate the T3pi (pancreatic islet‐like cell clusters derived from T3 cells), which expressed pancreatic islet cell‐specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the T3pi were analysed and compared with those of undifferentiated hES‐T3 cells and differentiated EBs. MicroRNAs negatively regulate the expression of protein‐coding mRNAs. The T3pi showed very high expression of microRNAs, miR‐186, miR‐199a and miR‐339, which down‐regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs and their target genes are very likely to play important regulatory roles in the development of pancreas and/or differentiation of islet cells, and they may be manipulated to increase the proportion of beta cells and insulin synthesis in the differentiated T3pi for cell therapy of type I diabetics.  相似文献   

3.
4.
miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging‐related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR‐10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR‐10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up‐ or downregulate miR‐10a in young and old hMSCs. Upregulation of miR‐10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR‐10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full‐length 3′‐UTR region of KLF4 harboring the seed‐matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR‐10a mimic into cells. The luciferase activity was significantly repressed by the miR‐10a mimic, proving the direct binding of miR‐10a to the 3′‐UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR‐10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging‐related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc.  相似文献   

5.
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.  相似文献   

6.
MicroRNAs (miRNAs) are approximately 21-nt RNAs that reduce target accumulation through mRNA cleavage or translational repression. Arabidopsis miR398 regulates mRNAs encoding two copper superoxide dismutase (CSD) enzymes and a cytochrome c oxidase subunit. miR398 itself is down-regulated in response to copper and stress. Here we show that miR398 is positively regulated by sucrose, resulting in decreased CSD1 and CSD2 mRNA and protein accumulation. This sucrose regulation is maintained both in the presence and absence of physiologically relevant levels of supplemental copper. Additionally, we show that plants expressing CSD1 and CSD2 mRNAs with altered miR398 complementarity sites display increased mRNA accumulation, whereas CSD1 and CSD2 protein accumulation remain sensitive to miR398 levels, suggesting that miR398 can act as a translational repressor when target site complementarity is reduced. These results reveal a novel miR398 regulatory mechanism and demonstrate that plant miRNA targets can resist miRNA regulation at the mRNA level while maintaining sensitivity at the level of protein accumulation. Our results suggest that even in plants, where miRNAs are thought to act primarily through target mRNA cleavage, monitoring target protein levels along with target mRNA levels is necessary to fully assess the consequences of disrupted miRNA-mRNA pairing. Moreover, the limited complementarity required to maintain robust miR398-directed repression of target protein accumulation suggests that similarly regulated endogenous plant miRNA targets may have eluded detection.  相似文献   

7.
Background information. miRNAs (microRNAs) are a class of non‐coding RNAs that inhibit gene expression by binding to recognition elements, mainly in the 3′ UTR (untranslated region) of mRNA. A single miRNA can target several hundred mRNAs, leading to a complex metabolic network. miR‐16 (miRNA‐16), located on chromosome 13q14, is involved in cell proliferation and apoptosis regulation; it may interfere with either oncogenic or tumour suppressor pathways, and is implicated in leukaemogenesis. These data prompted us to search for and validate novel targets of miR‐16. Results. In the present study, by using a combined bioinformatics and molecular approach, we identified two novel putative targets of miR‐16, caprin‐1 (cytoplasmic activation/proliferation‐associated protein‐1) and HMGA1 (high‐mobility group A1), and we also studied cyclin E which had been previously recognized as an miR‐16 target by bioinformatics database. Using luciferase activity assays, we demonstrated that miR‐16 interacts with the 3′ UTR of the three target mRNAs. We showed that miR‐16, in MCF‐7 and HeLa cell lines, down‐regulates the expression of caprin‐1, HMGA1a, HMGA1b and cyclin E at the protein level, and of cyclin E, HMGA1a and HMGA1b at the mRNA levels. Conclusions. Taken together, our data demonstrated that miR‐16 can negatively regulate two new targets, HMGA1 and caprin‐1, which are involved in cell proliferation. In addition, we also showed that the inhibition of cyclin E expression was due, at least in part, to a decrease in its mRNA stability.  相似文献   

8.
9.
MicroRNAs (miRNAs) are small non‐coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real‐time PCR. Notably, we observed 19 up‐regulated miRNAs and 29 significantly down‐regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM‐MSCs). The 19 up‐regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa‐miR‐516a‐3p, hsa‐miR‐125b‐1‐3p, hsa‐miR‐221‐5p, hsa‐miR‐7, hsa‐miR‐584‐5p, hsa‐miR‐190a, hsa‐miR‐106a‐5p, hsa‐mir‐376a‐5p, hsa‐mir‐377‐5p and hsa‐let‐7f‐2‐3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa‐miR‐516a‐3p and hsa‐miR‐7‐5p as these miRNAs were highly expressed upon validation with qRT‐PCR analysis. We further proceeded with loss‐of‐function analysis with these miRNAs and we observed that hsa‐miR‐516a‐3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa‐miR‐7‐5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa‐miR‐516a‐3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs.  相似文献   

10.
11.
Brain‐enriched miR‐128 is repressed in glioma cells, and could inhibit the proliferation of gliomas by targeting genes such as E2F3a and BMI1. To identify more targets of miR‐128 in glioblastoma multiforme, the pulse stable isotope labeling with amino acids in cell culture (pSILAC) technique was used to test its impact on whole protein synthesis in T98G glioma cells. We successfully identified 1897 proteins, of which 1459 proteins were quantified. Among them, 133 proteins were downregulated after the overexpression of miR‐128. Through predictions using various bioinformatics tools, 13 candidate target genes were chosen. A luciferase assay validated that 11 of 13 selected genes were potential targets of miR‐128, and a mutagenesis experiment confirmed CBFB, CORO1C, GLTP, HnRNPF, and TROVE2 as the target genes. Moreover, we observed that the expression of CORO1C, TROVE2, and HnRNPF were higher in glioma cell lines compared to normal brain tissues and presented a tendency toward downregulation after overexpression of miR‐128 in T98G cells. Furthermore, we have validated that CORO1C, TROVE2, and HnRNPF could inhibit glioma cell proliferation. In sum, our data showed that the integration of pSILAC and bioinformatics analysis was an efficient method for seeking the targets of miRNAs, and plentiful targets of miR‐128 were screened and laid the foundation for research into the miR‐128 regulation network.  相似文献   

12.
Aging is a multifactorial process characterized by the progressive deterioration of physiological functions. Among the multiple molecular mechanisms, microRNAs (miRNAs) have increasingly been implicated in the regulation of Aging process. However, the contribution of miRNAs to physiological Aging and the underlying mechanisms remain elusive. We herein performed high‐throughput analysis using miRNA and mRNA microarray in the physiological Aging mouse, attempted to deepen into the understanding of the effects of miRNAs on Aging process at the “network” level. The data showed that various p53 responsive miRNAs, including miR‐124, miR‐34a and miR‐29a/b/c, were up‐regulated in Aging mouse compared with that in Young mouse. Further investigation unraveled that similar as miR‐34a and miR‐29, miR‐124 significantly promoted cellular senescence. As expected, mRNA microarray and gene co‐expression network analysis unveiled that the most down‐regulated mRNAs were enriched in the regulatory pathways of cell proliferation. Fascinatingly, among these down‐regulated mRNAs, Ccna2 stood out as a common target of several p53 responsive miRNAs (miR‐124 and miR‐29), which functioned as the antagonist of p21 in cell cycle regulation. Silencing of Ccna2 remarkably triggered the cellular senescence, while Ccna2 overexpression delayed cellular senescence and significantly reversed the senescence‐induction effect of miR‐124 and miR‐29. Moreover, these p53 responsive miRNAs were significantly up‐regulated during the senescence process of p21‐deficient cells; overexpression of p53 responsive miRNAs or knockdown of Ccna2 evidently accelerated the cellular senescence in the absence of p21. Taken together, our data suggested that the p53/miRNAs/Ccna2 pathway might serve as a novel senescence modulator independent of p53/p21 pathway.  相似文献   

13.
14.
miRNAs通过完全或不完全的碱基互补绑定到信使RNA(mRNA)上,通过抑制翻译或者直接导致mRNA降解的方式来调节靶基因的表达.为了研究miRNAs在转录水平上面的调控作用,两种人类基因组中组织特异的miRNAs(miR-1和miR-124)被转染到HeLa细胞中,微阵列(microarray)分析转染前后细胞中各基因mRNA表达水平变化情况的结果表明:动物基因组中靶基因与miRNAs不完全的碱基互补也会导致mRNA的直接降解.通过分析实验得到的mRNA表达水平变化数据,发现这相同miRNA的不同靶基因mRNA表达水平的下调倍数有着明显的差别,推测这些靶基因mRNA序列本身存在某些影响其受调节程度的因素.为此,提取和分析这些靶基因mRNA的序列特征,通过对这些序列特征与mRNA表达水平下调数据进行统计相关分析,最终发现,miRNA靶基因受调节的程度与以下几个因素相关联:mRNA序列中miRNA靶位点的个数,靶位点与miRNA序列碱基互补的程度,以及绑定后形成二级结构的稳定程度(即最低自由能的大小).在此基础上,初步建立起一个多因子作用下的miRNA 靶基因mRNA表达水平下调程度模型,分析表明:该模型在一定程度上可以反映了部分序列特征对于miRNA靶基因mRNA表达水平下调程度的影响.  相似文献   

15.
MiRNAs are fine‐tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co‐twin case–control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen‐based hormone replacement therapy (HRT) to explore estrogen‐dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54–62‐years‐old monozygotic female twin pairs discordant for HRT (median 7 years). MCF‐7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR‐182, miR‐223 and miR‐142‐3p expressions in HRT using than in their nonusing co‐twins. Insulin/IGF‐1 signaling emerged one common pathway targeted by these miRNAs. IGF‐1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR‐182 and miR‐223 on IGF‐1R and FOXO3A mRNA as well as a dose‐dependent miR‐182 and miR‐223 down‐regulations concomitantly with up‐regulation of FOXO3A and IGF‐1R expression. Novel finding is the postmenopausal HRT‐reduced miRs‐182, miR‐223 and miR‐142‐3p expression in female skeletal muscle. The observed miRNA‐mediated enhancement of the target genes' IGF‐1R and FOXO3A expression as well as the activation of insulin/IGF‐1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women.  相似文献   

16.
17.
In this study, we first characterized synaptosome microRNA (miRNA) profiles using microarray and qRT‐PCR. MicroRNAs were detected in isolated synaptic vesicles, and Ago2 immunoprecipitation studies revealed an association between miRNAs and Ago2. Second, we found that miR‐29a, miR‐99a, and miR‐125a were significantly elevated in synaptosome supernatants after depolarization. MiRNA secretion by the synaptosome was Ca2+‐dependent and was inhibited by the exocytosis inhibitor, okadaic acid. Furthermore, application of nerve growth factor increased miRNA secretion without altering the spontaneous release of miRNAs. Conversely, kainic acid decreased miRNA secretion and enhanced the spontaneous release of miRNAs. These results indicate that synaptosomes could secrete miRNAs. Finally, synthesized miRNAs were taken up by synaptosomes, and the endocytosis inhibitor Dynasore blocked this process. After incubation with miR‐125a, additional miR‐125a was bound to Ago2 in the synaptosome, and expression of the miR‐125a target gene (PSD95 mRNA) was decreased; these findings suggest that the ingested miRNAs were assembled in the RNA‐induced silencing complex, resulting in the degradation of target mRNAs. To our knowledge, this is the first study that demonstrates the secretion of miRNAs by synaptosomes under physiological stimulation and demonstrates that secreted miRNAs might be functionally active after being taken up by the synaptic fraction via the endocytic pathway.  相似文献   

18.
19.
The mechanisms of latent tuberculosis (TB) infection remain elusive. Roles of microRNA (miRNA) have been highlighted in pathogen–host interactions recently. To identify miRNAs involved in the immune response to TB, expression profiles of miRNAs in CD4+ T cells from patients with latent TB, active TB and healthy controls were investigated by microarray assay and validated by RT‐qPCR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyse the significant functions and involvement in signalling pathways of the differentially expressed miRNAs. To identify potential target genes for miR‐29, interferon‐γ (IFN‐γ) mRNA expression was measured by RT‐qPCR. Our results showed that 27 miRNAs were deregulated among the three groups. RT‐qPCR results were generally consistent with the microarray data. We observed an inverse correlation between miR‐29 level and IFN‐γ mRNA expression in CD4+ T cells. GO and KEGG pathway analysis showed that the possible target genes of deregulated miRNAs were significantly enriched in mitogen‐activated protein kinase signalling pathway, focal adhesion and extracellular matrix receptor interaction, which might be involved in the transition from latent to active TB. In all, for the first time, our study revealed that some miRNAs in CD4+ T cells were altered in latent and active TB. Function and pathway analysis highlighted the possible involvement of miRNA‐deregulated mRNAs in TB. The study might help to improve understanding of the relationship between miRNAs in CD4+ T cells and TB, and laid an important foundation for further identification of the underlying mechanisms of latent TB infection and its reactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号