首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The Irre cell‐recognition module (IRM) is a group of evolutionarily conserved and structurally related transmembrane glycoproteins of the immunoglobulin superfamily. In Drosophila melanogaster, it comprises the products of the genes roughest (rst; also known as irreC‐rst), kin‐of‐irre (kirre; also known as duf), sticks‐and‐stones (sns), and hibris (hbs). In this model organism, the behavior of this group of proteins as a partly redundant functional unit mediating selective cell recognition was demonstrated in a variety of developmental contexts, but their possible involvement in ovarian development and oogenesis has not been investigated, notwithstanding the fact that some rst mutant alleles are also female sterile. Here, we show that IRM genes are dynamically and, to some extent, coordinately transcribed in both pupal and adult ovaries. Additionally, the spatial distribution of Hbs, Kirre, and Rst proteins indicates that they perform cooperative, although largely nonredundant, functions. Finally, phenotypical characterization of three different female sterile rst alleles uncovered two temporally separated and functionally distinct requirements for this locus in ovarian development: one in pupa, essential for the organization of peritoneal and epithelial sheaths that maintain the structural integrity of the adult organ and another, in mature ovarioles, needed for the progression of oogenesis beyond stage 10.  相似文献   

2.
Using the larvae, pharate pupa, and pharate adults of the moth fly, Telmatoscopus albipunctatus, histological and ultrastructural features of the salivary glands were investigated. The gland lumen contains a milky secretion from the first instar. This secretion continues to ccur at all subsequent developmental stages; with the onset of the pharate pupal stage, however, the secretion becomes transparent and rather viscous. Histochemical tests revealed that it is mainly proteinaceous. Glands from the same developmental stage may respond differently to PAS-reaction.Various cell organelles were compared at consecutive stages of larval development and of secretory activity of the salivary glands. In first and second instar larvae autophagic vacuoles are virtually absent in the salivary gland cells. They were occasionally found in the third instar, when they appear to be engaged in the process of organelle turnover. Histolysis of the larval glands is initiated towards the close of the fourth instar when the number of autophagic vacuoles starts to increase. Simultaneously, the cytoplasm, previously full of ribosomes and endoplasmic reticulum, starts losing these structures. At the beginning of the pharate adult stage, the cytoplasm becomes practically devoid of all structures other than those engaged in autophagy.Polyteny of the chromosomes during ontogeny of the larval salivary glands is also discussed.  相似文献   

3.
4.
Abstract The D. melanogaster rst and kirre genes encode two highly related immunoglobulin-like cell adhesion molecules that function redundantly during embryonic muscle development. The two genes appear to be derived from a common ancestor by gene duplication. Gene duplications have been proposed to be of major evolutionary significance since duplicated redundant sequences can accumulate mutations without detrimental effects for the organism and leave the duplicated genes free to assume novel functions. To address the issue of conservation of the duplicated sequences and their putative redundancy, as well as to identify putative functional divergence of the paralogs during drosophilid evolution, we performed an interspecies comparison of the rst and kirre genes from D. virilis and D. melanogaster. The D. virilis genome contains orthologues of both rst and kirre and hence the duplication took place before the split of the two lineages and has subsequently been conserved. However, whilst the Rst orthologues show a high degree of sequence similarity, this similarity is lower in Kirre orthologues. Especially the intracellular domains of D. virilis and D. melanogaster Kirre sequences are highly divergent: the D. virilis kirre gene lacks the 3′-most exon present in D. melanogaster, which contains motifs conserved between kirre and rst in D. melanogaster. Hence, while each of the two genes is highly conserved at the level of its exon-intron organization, the selection forces acting on the rst and kirre coding sequences are different. These findings are discussed in the light of general evolutionary mechanisms.  相似文献   

5.
《Autophagy》2013,9(3):359-360
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.

Addendum to: Berry DL, Baehrecke EH. Growth arrest and autophagy are required for programmed salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48.  相似文献   

6.
Salivary glands of 3rd instar larvae of Drosophila melanogaster were labeled with 3H-leucine in the presence and absence of ecdysterone. Twentysix ecdysterone inducible proteins were detected. Their induction was correlated with puff stage. Synthesis of fifteen proteins commenced during early puff stage (PS2); synthesis of seven others at late puff stages (PS8–10). Synthesis of four proteins was induced between puff stage 3/4 and 7/8. Thus, the hormonal induction of protein synthesis generally reflected the appearance of early and of late puffs as described by Ashburner (1972). Eleven ecdysterone inducible proteins were detected in larval fat body in vitro. Comparison of the fat body to the salivary gland proteins revealed that one of the ecdysterone induced fat body proteins was identical in molecular weight and charge to one of the proteins induced by ecdysterone in salivary glands.  相似文献   

7.
Recently we have shown that BhSGAMP‐1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20‐OH ecdysone. This control probably involves the participation of short‐lived repressor(s). We also found that the promoter of BhSGAMP‐1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP‐1 peptide is secreted in the saliva. The BhSGAMP‐1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect's immediate vicinity, during molts. genesis 47:847–857, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
A detailed cytogenetic study of male-viable and lethal deficiencies affecting the w-spl interval in Drosophila melanogaster has revealed the existence of genetic duplication such that, for example, the consequences of the loss of salivary chromosome band 3C3 are essentially compensated for by the presence of band 3C5-6, and vice versa. Although each of the duplicate elements possesses rst + and vt + activity, rst and vt phenotypes appear in males when 3C3 and part, but not all, of 3C5-6 are deleted. The degree of rst and vt expression can be correlated with the amount of material lost from 3C5-6. Deletions removing the entire 3C3-6 interval are male lethal. Despite the duplicate elements, at least one EMS-induced, presumptive point mutation expressing only rst is known; two others express both rst and vt. No loci other than rst and vt occur between W and spl. Band 3C2 appears to be associated with the w locus, which probably extends into the interband space between 3C1 and 3C2. The w locus is not involved in the rst-vt duplication in the 3C3-6 region. — The cytogenetic characteristics of the 3C region—a high coefficient of crossing over, frequent induced chromosome breakage, ectopic pairing, constriction, and an extended replication period—can be correlated with the fact that in 3C a relatively long stretch of DNA, nearly 2% of the entire X chromosome, is highly compacted into but few adjacent bands. These characteristics do not necessarily represent special properties of intercalary heterochromatin; they can be interpreted as reflecting the properties of any similarly organized euchromatic region.This investigation was aided by research grants from the U. S. Public Health Service (GM 13631) to G. Lefevre, Jr. and the National Science Foundation (GB 27599) to M. M. Green.  相似文献   

9.
In the larval fat body of Drosophila gibberosa, polytene chromosome structure and activity exhibit cytological differences from chromosomes of midgut and salivary glands. These differences include long-persisting puffs, transient puffs and long-persisting band modulations. Some early ecdysteroid-induced puffs are present in all three organs but few late puffs are present in the fat body. Comparative studies reveal, therefore, that late larval-early pupal puffing is enhanced in salivary glands relative to gut, fat body and Malpighian tubules. After the fat body breaks up in the prepupa, the rate of programmed cell death and the corresponding slow decline of chromosomal activity also differ from cell to cell and from other organs.by M.L. Pardue  相似文献   

10.
Protein metabolism in salivary glands, gut, haemolymph, and fat body during the last larval instar of the blowfly, Calliphora erythrocephala, has been investigated. In salivary glands, protein release, protein synthesis, amylase, and pepsin-like protease activity were maximal in 6 day larvae, this being at a time when the larvae had finished feeding. All these functions declined in glands from the rounded-off white puparial stage (R.O.) while acid phosphatase activity rose throughout the third instar to a maximum at the R.O. stage, Glands from 6 and 7 day larvae released protein which on disk gel electrophoresis separated into four minor bands and two major bands one of the latter possessing protease activity.In the gut, pepsin-like protease activity was maximal in 4 day larvae after which it fell rapidly thus following the feeding pattern of the larva in contrast to that in the salivary glands which did not.In vitro experiments showed that protease was released from 6 day glands through the basal membrane of the cells and not via the duct. A pepsin-like protease was also found in the haemolymph and fat body, the activity in the fat body rising rapidly during the latter part of the third instar, a rise which is attributed to the fat body sequestering protease from the haemolymph. Acid phosphatase activity in the fat body was maximal in 5 day larvae indicating that this enzyme was synthesized early in the third instar. It was shown that fat body sequestered 14C-labelled protein synthesized by and released from the salivary glands, most of the 14C activity being associated with a 600 g precipitable, acid-phosphatase rich fraction.It is proposed that in late third instar larvae the salivary glands function as glands of internal secretion, releasing protease into the haemolymph, which is then sequestered by the fat body (and perhaps other tissues) and is subsequently used in the lysis of the tissues at the time of metamorphosis.  相似文献   

11.
Autophagy, a form of programmed cell death (PCD) that is morphologically distinguished from apoptosis, is thought to be as prevalent as apoptosis, at least during development. In insect metamorphosis, the steroid hormone 20-hydroxyecdysone (ecdysone) activates autophagic PCD to eliminate larval structures that are no longer needed. However, in comparison with apoptosis, there are not many studies on the regulation mechanisms of autophagy. To provide a useful model for studying autophagic PCD, I established an in vitro culture system that enables real-time observation of the autophagic cell destruction of Drosophila salivary glands. The new system revealed that de novo gene expression was still required for the destruction of salivary glands dissected from phanerocephalic pupae. This indicates the usefulness of the system for exploring genes that participate in the last processes of autophagic PCD.Edited by N. Satoh  相似文献   

12.
Using P element-mediated mutagenesis we have isolated 20 X-linked lethal mutations, representing at least 14 complementation groups, which exhibit melanotic tumor phenotypes. We present the systematic analysis of this interesting group of lethal mutations that were selected for their visible melanotic or immune response. The lethal and melanotic tumor phenotypes of each lethal(1) aberrant immune response (air) mutation are pleiotropic effects of single genetic lesions. Lethality occurs throughout the larval and early pupal periods of development and larval development is extended in some air mutants. The air mutant lethal syndromes include abnormalities associated with the brain, haematopoietic organs, gut, salivary glands, ring glands, and imaginal discs. Additional characterization of the melanotic tumor mutations Tuml and tu(1)Szts have indicated that the melanotic tumor phenotype is similar to that observed in the air mutants. These studies have led to the proposal that two distinct classes of melanotic tumor mutations exist. Class 1 includes mutants in which melanotic tumors result from “autoimmune responses” or the response of an apparently normal immune system to the presence of abnormal target tissues. The Class 2 mutants display obvious defects in the haematopoietic organs or haemocytes, manifested as overgrowth, and the resulting aberrant immune system behavior may contribute to melanotic tumor formation.  相似文献   

13.
《Insect Biochemistry》1986,16(2):327-331
When [14C]glucose was injected into the last instar larvae of the silkworm, Bombyx mori, the label was incorporated into various tissues at varying degrees depending on the developmental stages. Fat body exhibited high incorporation rates throughout the feeding periods. Silk glands became active in incorporation but midgut decreased toward larval maturation. The pulse labeling experiment clearly demonstrated that the metabolic shift from lipogenesis to glycogenesis occurred in fat body at the middle of the last instar; a predominant incorporation was found in lipids when [14C]glucose was injected at the early stage, while at the late stage glycogen synthesis became most active. Incorporation into fat body proteins was not a major factor throughout the instar. Extirpation of silk glands enhanced incorporation into glycogen and proteins at the late stage but did not affect lipid synthesis. Long-term chase showed that fat body lipids and proteins synthesized at the early stage were totally carried over into the pupal fat body, while much glycogen produced at the late stage was used during the larval-pupal transformation with the remainder carried over into the pupa.From these results the metabolic shift from lipogenesis to glycogenesis in fat body is discussed in relation to the storage function of the fat body for pupal metamorphosis.  相似文献   

14.
Kanao T  Miyachi Y 《Mutation research》2006,595(1-2):60-68
We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion.  相似文献   

15.
Summary We observed three types of cells in the epithelial layer of the midgut of last instars of Pieris brassicae. The columnar and goblet cells degenerate during the second part of the last larval stage while the undifferentiated basal cells proliferate during this period and create the epithelium of the pupal midgut. The first morphological sign of involution is the formation of autophagic vacuoles and dense bodies in the cytoplasm of columnar and goblet cells which begins on day 4 of the stage. The number and size of autophagic vacuoles and dense bodies increase during the spinning period (85–96 h). Finally, at the end of the stage, the columnar and goblet cells become displaced by the growing pupal epithelium and reach the lumen where they disintegrate.Autophagocytosis was not seen in the cells during the feeding period (0–72 h). However, we observed many autophagic vacuoles in the columnar and goblet cells of 50-h-old instars 3 h after the administration of 30 g/g body weight of 20-hydroxyecdysone. The hormone treatment elevated by 100% the incorporation of 3H-leucine into the proteins of the midgut. Inhibitors of protein synthesis, cycloheximide and puromycin, in doses that supressed the incorporation of the amino acid by 60–70% either in hormone treated or untreated larvae, exerted diverse effects on the autophagic process. Puromycin did not block the hormone-induced formation of autophagic vacuoles while cycloheximide prevented it. Possible explanations for this diversity are discussed.  相似文献   

16.
Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf) and its paralogue Roughest (Rst), a scaffold protein Rolling pebbles (Rols) and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.  相似文献   

17.
Mutations in 13 genes with temperature-sensitive (ts), flightless phenotypes have been examined. All hop and fly well when raised at the permissive temperature, but fly poorly, or not at all, when raised at the restrictive temperature. The mutations were divided into three groups on the basis of their temperature-sensitive periods (TSPs) for flightlessness. The TSPs for mutations at five loci, fli-C1, D1, E1, I1, and shak A1, in the first group are confined to 24 to 48 hr interval during early pupal development. Mutations in the second group, including eag101, fli B1, and futs1 have continuous TSPs 3 to 4 days in length, extending from late larval through the early pupal stages. The flight TSPs for mutations in the third class, including fli J1, fli K2, flrd H3, and flrd N1, are almost continuous, and span most of the larval and pupal periods. Many of the mutations have pleiotropic phenotypes, including semilethality and lethality, and wing posture and cuticle abnormalities, with discernible TSPs. One of the more intriguing pleiotropic phenotypes is the ts optomotor response exhibited by fli J2, the TSP for which extends from late larval through late pupal stages.  相似文献   

18.
The patterns of puffing activity have been studied during the late larval and prepupal stages of Drosophila melanogaster. On the major salivary gland autosomes (chromosomes 2 and 3) 108 loci form puffs at some time during these developmental stages. The timing and pattern of activity of 83 of these puffs is found to be strictly dependent upon the age of the animals. Two major peaks in puffing activity occur. The first of these is at the time of puparium formation and the second in 8 hr. old prepupae. Both of these puffing peaks precede a moult by 4 hrs. 30 puffs are active before or at the time of both of these two moults. However, the sequence of appearance and regression of many of this group of puffs is different at the prepupal moult than at the pupal moult. 12 puffs occur only before or at the time of the prepupal moult and 13 puffs only before or at the time of the pupal moult. The functional significance of these periods of puffing activity is discussed and it is concluded that one function of this genetic activity in the salivary glands of metamorphosing Drosophila is the production of substances to be utilised during the histogenesis of the adult tissues.  相似文献   

19.
Abstract Gross anatomy, ultrastructure, innervation and ultrastructural alterations of the prothoracic gland (PTG) of cotton bollworm, Helicover pa armigera (Lepidoptera: Noctuidae) are illustrated for the last larval and early pupal stages as observed by light and electron microscopy. The T-shaped, paired (PTGs) consist each of 76–116 cells which are classified morphologically as large and small gland cells. In addition, another kind of small (about 6μ in diameter) gland cell was found in the PTGs of last instar larvae. The PTGs are innervated by the branches of 3 nerves! and tracheae and tracheoles are abundantly distributed to these glands. PTGs disappeared completely by the third day after ecdysis to the pupal stage (at temperature 28 C with a photoperiod L15:D9). An intercellular channel system (ICS) is formed by numerous, deep invaginations of the plasma membrane of gland cells. This ICS gradually increases in depth and width and reaches maximum development around the time of the major ecdysteroid secretion peak during the last larval instar. Numerous multivesicular sacs (MVS) with their remnants and an extensive rough endoplasmic reticulum were observed within ICS and cytoplasm, respectively, on the fourth day of the last larval instar. At that time the matrix of mitochondria became much more electron lucent. Freeze-fracture replicas of the glandular epithelium were made from last instar (4th day larvae. Dynamics of structure are related to data from others concerning secretory states of the prothoracic glands of this species.  相似文献   

20.
Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca2+‐ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin‐induced diabetes. We have also examined the influence of the acidosis state on this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH4Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca2+‐ATPase (total, independent, and dependent) was determined in the homogenate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be higher in the diabetic animals. Ca2+‐ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号