首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee YS  Choi KM  Choi MH  Ji SY  Lee S  Sin DM  Oh KW  Lee YM  Hong JT  Yun YP  Yoo HS 《Cell proliferation》2011,44(4):320-329
Objectives: Melanoma is the most aggressive form of skin cancer, and it resists chemotherapy. Candidate drugs for effective anti‐cancer treatment have been sought from natural resources. Here, we have investigated anti‐proliferative activity of myriocin, serine palmitoyltransferase inhibitor, in the de novo sphingolipid pathway, and its mechanism in B16F10 melanoma cells. Material and methods: We assessed cell population growth by measuring cell numbers, DNA synthesis, cell cycle progression, and expression of cell cycle regulatory proteins. Ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate levels were analysed by HPLC. Results: Myriocin inhibited proliferation of melanoma cells and induced cell cycle arrest in the G2/M phase. Expressions of cdc25C, cyclin B1 and cdc2 were decreased in the cells after exposure to myriocin, while expression of p53 and p21waf1/cip1 was increased. Levels of ceramide, sphingomyelin, sphingosine and sphingosine‐1‐phosphate in myriocin‐treated cells after 24 h were reduced by approximately 86%, 57%, 75% and 38%, respectively, compared to levels in control cells. Conclusions: Our results suggest that inhibition of sphingolipid synthesis by myriocin in melanoma cells may inhibit expression of cdc25C or activate expression of p53 and p21waf1/cip1, followed by inhibition of cyclin B1 and cdc2, resulting in G2/M arrest of the cell cycle and cell population growth inhibition. Thus, modulation of sphingolipid metabolism by myriocin may be a potential target of mechanism‐based therapy for this type of skin cancer.  相似文献   

2.
Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins   总被引:6,自引:2,他引:6       下载免费PDF全文
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of ~120 and ~200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

3.
The cyclin dependent kinase inhibitor (CKI) p27Kip1 binds to cyclin E/CDK2 complexes and prevents premature S-phase entry. During late G1 and throughout S phase, p27 phosphorylation at T187 leads to its subsequent degradation, which relieves CDK2 inhibition to promote cell cycle progression. However, critical events that trigger CDK2 complexes to phosphorylate p27 remain unclear. Utilizing recombinant proteins, we demonstrate that human Speedy (Spy1) activates CDK2 to phosphorylate p27 at T187 in vitro. Addition of Spy1 or Spy1/CDK2 to a preformed, inhibited cyclin E/CDK2/p27 complex also promoted this phosphorylation. Furthermore, Spy1 protected cyclin E/CDK2 from p27 inhibition toward histone H1, in vitro. Inducible Spy1 expression in U2OS cells reduced levels of endogenous p27 and exogenous p27WT, but not a p27T187A mutant. Additionally, Spy1 expression in synchronized HeLa cells enhanced T187 phosphorylation and degradation of endogenous p27 in late G1 and throughout S phase. Our studies provide evidence that Spy1 expression enhances CDK2-dependent p27 degradation during late G1 and throughout S phase.  相似文献   

4.
5.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

6.
Quercetin, a widely distributed bioflavonoid, has been shown to induce growth inhibition in a variety of human cancer cells. However, the regulation of survivin and Bcl‐2 on the quercetin‐induced cell‐growth inhibition and apoptosis in cancer cells remains unclear. In the present study, we report that quercetin can inhibit proliferation and induce apoptosis in HepG2 cells in dose‐ and time‐dependent manner. Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) staining showed that HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to quercetin. Cell‐cycle analysis reveals a significant increase of the proportion of cells in G0/G1 phase. We also demonstrate that the levels of survivin and Bcl‐2 protein expression in HepG2 cells decreased concurrently, and the levels of p53 protein increased significantly after treatment with quercetin by immunocytochemistry analysis. Relative activity of caspase‐3 and caspase‐9 increased significantly. These data clearly indicate that quercetin‐induced apoptosis is associated with caspase activation, and the levels of survivin and Bcl‐2. Our results indicate that the expression of survivin may be associated with Bcl‐2 expression, and the inhibition expression of survivin, in conjunction with Bcl‐2, might cause more pronounced apoptotic effects. Together, concurrent down‐regulated survivin and Bcl‐2 play an important role in HepG2 cell apoptosis induced by quercetin.  相似文献   

7.
Regulation of Exit from Quiescence by p27 and Cyclin D1-CDK4   总被引:13,自引:9,他引:4       下载免费PDF全文
The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells.  相似文献   

8.
Although adipose-derived stem cells (ADSCs) have demonstrated a promising potential for the applications of cell-based therapy and regenerative medicine, excessive reactive oxygen species (ROS) are harmful to ADSCs cell survival and proliferation. Vitamin C is an important antioxidant, and is often added into culture media as an essential micronutrient. However, its roles on the proliferation of human ADSCs have not been studied. Therefore, in this study, human ADSCs were isolated, and detected by flow cytometry for the analysis of their cell surface antigens. Cell proliferation and cell cycle progression were measured with cell counting kit-8 assay and flow cytometry, respectively. Western blotting was used to detect the expression levels of cyclin E1, p53, p21, and CDK2 proteins. The effect of vitamin C pretreatment on the production of hydrogen peroxide (H2O2)-mediated ROS in the ADSCs was evaluated by flow cytometry. Our results indicated that vitamin C treatment significantly increased cell proliferation, and changed the cell cycle distribution of ADSCs by decreasing the percentage of G1 phase, and concurrently increased the percentage of S and G2/M phase. Western blot analysis indicated that vitamin C treatment up-regulated the expression levels of cyclin E1 and CDK2, but down-regulated p53 and p21 proteins expression, which contributed to cell proliferation and cell cycle progression. Vitamin C pretreatment significantly reduced the production of H2O2-induced ROS in the ADSCs. These findings suggest that vitamin C can promote the proliferation and cell cycle progression in the ADSCs possibly through regulation of p53-p21 signal pathway.  相似文献   

9.
Exposure of asynchronously growing human HeLa cervical carcinoma cells to roscovitine (ROSC), a selective cyclin‐dependent kinases (CDKs) inhibitor, arrests their progression at the transition between G2/M and/or induces apoptosis. The outcome depends on the ROSC concentration. At higher dose ROSC represses HPV‐encoded E7 oncoprotein and initiates caspase‐dependent apoptosis. Inhibition of the site‐specific phosphorylation of survivin and Bad, occurring at high‐dose ROSC treatment, precedes the onset of apoptosis and seems to be a prerequisite for cell death. Considering the fact that in HeLa cells the G1/S restriction checkpoint is abolished by E7, we addressed the question whether the inhibition of CDKs by pharmacological inhibitors in synchronized cells would be able to block the cell‐cycle in G1 phase. For this purpose, we attempted to synchronize cells by serum withdrawal or by blocking of the mitotic apparatus using nocodazole. Unlike human MCF‐7 cells, HeLa cells do not undergo G1 block after serum starvation, but respond with a slight increase of the ratio of G1 population. Exposure of G1‐enriched HeLa cells to ROSC after re‐feeding does not block their cell‐cycle progression at G1‐phase, but increases the ratio of S‐ and G2‐phase, thereby mimicking the effect on asynchronously growing cells. A quite different impact is observed after treatment of HeLa cells released from mitotic block. ROSC prevents their cell cycle progression and cells transiently accumulate in G1‐phase. These results show that inhibition of CDKs by ROSC in cells lacking the G1/S restriction checkpoint has different outcomes depending on the cell‐cycle status prior to the onset of treatment. J. Cell. Biochem. 106: 937–955, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Estrogen-induced progression through G1 phase of the cell cycle is preceded by increased expression of the G1-phase regulatory proteins c-Myc and cyclin D1. To investigate the potential contribution of these proteins to estrogen action, we derived clonal MCF-7 breast cancer cell lines in which c-Myc or cyclin D1 was expressed under the control of the metal-inducible metallothionein promoter. Inducible expression of either c-Myc or cyclin D1 was sufficient for S-phase entry in cells previously arrested in G1 phase by pretreatment with ICI 182780, a potent estrogen antagonist. c-Myc expression was not accompanied by increased cyclin D1 expression or Cdk4 activation, nor was cyclin D1 induction accompanied by increases in c-Myc. Expression of c-Myc or cyclin D1 was sufficient to activate cyclin E-Cdk2 by promoting the formation of high-molecular-weight complexes lacking the cyclin-dependent kinase inhibitor p21, as has been described, following estrogen treatment. Interestingly, this was accompanied by an association between active cyclin E-Cdk2 complexes and hyperphosphorylated p130, identifying a previously undefined role for p130 in estrogen action. These data provide evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on or prior to the formation of active cyclin E-Cdk2-p130 complexes and loss of inactive cyclin E-Cdk2-p21 complexes, indicating a physiologically relevant role for the cyclin E binding motifs shared by p130 and p21.  相似文献   

11.
Cyclin D2 is a member of the family of D-type cyclins that is implicated in cell cycle regulation, differentiation, and oncogenic transformation. To better understand the role of this cyclin in the control of cell proliferation, cyclin D2 expression was monitored under various growth conditions in primary human and established murine fibroblasts. In different states of cellular growth arrest initiated by contact inhibition, serum starvation, or cellular senescence, marked increases (5- to 20-fold) were seen in the expression levels of cyclin D2 mRNA and protein. Indirect immunofluorescence studies showed that cyclin D2 protein localized to the nucleus in G0, suggesting a nuclear function for cyclin D2 in quiescent cells. Cyclin D2 was also found to be associated with the cyclin-dependent kinases CDK2 and CDK4 but not CDK6 during growth arrest. Cyclin D2-CDK2 complexes increased in amounts but were inactive as histone H1 kinases in quiescent cells. Transient transfection and needle microinjection of cyclin D2 expression constructs demonstrated that overexpression of cyclin D2 protein efficiently inhibited cell cycle progression and DNA synthesis. These data suggest that in addition to a role in promoting cell cycle progression through phosphorylation of retinoblastoma family proteins in some cell systems, cyclin D2 may contribute to the induction and/or maintenance of a nonproliferative state, possibly through sequestration of the CDK2 catalytic subunit.  相似文献   

12.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4–6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest.The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase. That, however, appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling and not a consequence of the G2 arrest as can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest.Additionally, our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.Key words: fibroblast growth factor, chondrocyte, G2/M arrest, Myt1, cyclin B1, CDK1  相似文献   

13.
Plasmalogens play multiple roles in the structures of biological membranes, cell membrane lipid homeostasis and human diseases. We report the isolation and identification of choline plasmalogens (ChoPlas) from swine liver by high performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC)/MS. The growth and viability of hepatoma cells (CBRH7919, HepG2 and SMMC7721) was determined following ChoPlas treatment comparing with that of human normal immortal cell lines (HL7702). Result indicated that ChoPlas inhibited hepatoma cell proliferation with an optimal concentration and time of 25 μmol/L and 24 h. To better understand the mechanism of the ChoPlas-induced inhibition of hepatoma cell proliferation, Caveolin-1 and PI3K/Akt pathway signals, including total Akt, phospho-Akt(pAkt) and Bcl-2 expression in CBRH7919 cells, were determined by western blot. ChoPlas treatment increased Caveolin-1 expression and reduced the expression of phospho-Akt (pAkt) and Bcl-2, downstream targets of the PI3K/Akt pathway. Further cell cycle analysis showed that ChoPlas treatment induced G1 and G1/S phase transition cell cycle arrest. The expression of essential cell cycle regulatory proteins involved in the G1 and G1/S phase transitions, cyclin D, CDK4, cyclin E and CDK2, were also analyzed by western blot. ChoPlas reduced CDK4, cyclin E and CDK2 expression. Taken together, the results indicate that swine liver-derived natural ChoPlas inhibits hepatoma cell proliferation associated with Caveolin-1 and PI3K/Akt signals.  相似文献   

14.
Depletion of T‐cell‐dependent immunity is a major consideration for patients suffering from infections of human immunodeficiency virus (HIV), those undergoing organ transplantation, and those receiving anti‐cancer chemotherapy and/or radiotherapy. In general, T‐cell regeneration occurs in the thymus through thymopoiesis. We have found that doxycycline (Dox), a tetracycline derivative, enhances the proliferation of mouse thymic epithelial cells, which are unique in their capacity to support positive selection and are essential throughout the development of thymocytes. Cell cycle analysis indicates that the increased cell proliferation is due to a shortened G0/G1 phase. To reveal the underlying mechanisms, we examined the expression of an array of molecules that regulate the cell cycle. The results show that in mouse thymic medullary‐type epithelial cell line 1 (MTEC1) Dox leads to elevated levels of H‐Ras, phosphorylated extracellular signal‐regulated kinase 1/2 (p‐ERK1/2), cyclin E, cyclin dependent kinase 4/2 (CDK4/CDK2), E2F3, and c‐myc. These data, and the observation that the proliferation‐enhancing effect is largely abolished following treatment with an ERK inhibitor support an active role of the Ras‐ERK/mitogen‐activated protein kinase (MAPK) signaling pathway. In conclusion, the present study reveals a new activity of an old family of antibiotics. The in vivo effect of Dox on immune reconstitution warrants further exploration. J. Cell. Biochem. 107: 494–503, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.  相似文献   

18.
Growing interest in the beneficial effects of antioxidants has inspired the synthesis of new phenolic acid phenethyl ureas (PAPUs) with enhanced antioxidant potential. We have previously shown the capacity of one PAPU compound, (E)-1-(3,4-dihydroxyphenethyl)-3-styrylurea (PAPU1), to induce caspase-dependent apoptosis in melanoma cells. In the present study, we examined the anti-proliferative effects of PAPU compounds on MCF-7 human breast cancer cells and determined the molecular mechanisms involved. Treatment with PAPU compounds inhibited predominantly proliferation in these cells, where the PAPU1 was the most efficient form. Flow cytometric analysis showed that PAPU1 blocked cell cycle progression in the G0/G1 phase, and reduced the proportion of cells in G2/M phase. This was related to the inhibition of cell cycle regulatory factors, including cyclin D/E and cyclin-dependent kinase (CDK) 2/4, through induction of p21Cip1. PAPU1 also induced the mitochondrial-mediated and caspase-dependent apoptosis in MCF-7 cells. This was evidenced by cellular changes in the levels of Bcl-2 and Bax, loss of the mitochondrial membrane potential, release of cytochrome c into the cytosol, and caspase-9 activation. Collectively, our results suggest that G1 cell cycle regulatory proteins and mitochondrial pathways are the crucial targets of PAPU1 in the chemoprevention of breast cancer cells.  相似文献   

19.
Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway.  相似文献   

20.
Progression through the G1 phase of the cell cycle is controlled by diverse cyclin-dependent kinases (CDKs) that might be associated to numerous cyclin isoforms. Given such complexity, regulation of cyclin degradation should be crucial for coordinating progression through the cell cycle. In Saccharomyces cerevisiae, SCF is the only E3 ligase known to date to be involved in G1 cyclin degradation. Here, we report the design of a genetic screening that uncovered Dma1 as another E3 ligase that targets G1 cyclins in yeast. We show that the cyclin Pcl1 is ubiquitinated in vitro and in vivo by Dma1, and accordingly, is stabilized in dma1 mutants. We demonstrate that Pcl1 must be phosphorylated by its own CDK to efficiently interact with Dma1 and undergo degradation. A nonphosphorylatable version of Pcl1 accumulates throughout the cell cycle, demonstrating the physiological relevance of the proposed mechanism. Finally, we present evidence that the levels of Pcl1 and Cln2 are independently controlled in response to nutrient availability. This new previously unknown mechanism for G1 cyclin degradation that we report here could help elucidate the specific roles of the redundant CDK-cyclin complexes in G1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号