首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate.  相似文献   

2.
The heterocyclic compound diethyl 6‐anilino‐5H‐2,3‐dithia‐5,7‐diazacyclopenta(cd)indene‐1,4‐dicarboxylate (D1) was found to form highly emissive aggregates in polar solvents, and the aggregate emission can be tuned by the simple addition of water to a dimethylsulfoxide solution. A theoretical study based on Density functional theory (DFT) calculations, shows that intermolecular interactions of D1 with solvent may be potential factors in the fluorescence change. In addition, the phenyl ring in D1 plays an important role because of its response to solvent. In the non‐aggregated state, deprotonation of the N–H of D1 can proceed easily on the addition of base, and the deprotonated compound might interact with Ag+, resulting in a significant change in color and fluorescence quenching, which make it a potential chemosensor for the selective detection of trace amounts of Ag+. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Diagnosis of cerebrovascular disease (CVD) at early stages is essential for preventing sequential complications. CVD is often associated with abnormal cerebral microvasculature, which may impact cerebral‐autoregulation (CA). A novel hybrid near‐infrared diffuse optical instrument and a finger plethysmograph were used to simultaneously detect low‐frequency oscillations (LFOs) of cerebral blood flow (CBF), oxy‐hemoglobin concentration ([HbO2]), deoxy‐hemoglobin concentration ([Hb]) and mean arterial pressure (MAP) in older adults before, during and after 70° head‐up‐tilting (HUT). The participants with valid data were divided based on Framingham risk score (FRS, 1‐30 points) into low‐risk (FRS ≤15, n = 13) and high‐risk (FRS >15, n = 11) groups for developing CVD. The LFO gains were determined by transfer function analyses with MAP as the input, and CBF, [HbO2] and [Hb] as the outputs (CA ∝ 1/Gain) . At resting‐baseline, LFO gains in the high‐risk group were relatively lower compared to the low‐risk group. The lower baseline gains in the high‐risk group may attribute to compensatory mechanisms to maintain stronger steady‐state CAs. However, HUT resulted in smaller gain reductions in the high‐risk group compared to the low‐risk group, suggesting weaker dynamic CAs. LFO gains are potentially valuable biomarkers for early detection of CVD based on associations with CAs.  相似文献   

4.
This paper reports the synthesis and characterization of 2‐(4‐ethoxyphenyl)‐4‐phenyl quinoline (OEt‐DPQ) organic phosphor using an acid‐catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt‐DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra‐red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X‐rays (EDAX). The thermal stability and melting point of OEt‐DPQ and thin films were probed by thermo‐gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV–visible optical absorption spectra of OEt‐DPQ in the solid state and blended films produced absorption bands in the range 260–340 nm, while photoluminescence (PL) spectra of OEt‐DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363–369 nm. However, solvated OEt‐DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31–43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (Eg), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E0) and oscillator strength (f), quantum yield (φf), oscillator energy (E0), dispersion energy (Ed), Commission Internationale de l'Éclairage (CIE) co‐ordinates and energy yield fluorescence (EF) were calculated to assess the phosphor's suitability as a blue emissive material for opto‐electronic applications such as organic light‐emitting diodes (OLEDs), flexible displays and solid‐state lighting technology.  相似文献   

5.
Biospectroscopy has the potential to investigate and characterize biological samples and could, therefore, be utilized to diagnose various diseases in a clinical environment. An important consideration in spectrochemical studies is the cost‐effectiveness of the substrate used to support the sample, as high expense would limit their translation into clinic. In this paper, the performance of low‐cost aluminium (Al) foil substrates was compared with the commonly used low‐emissivity (low‐E) slides. Attenuated total reflection‐Fourier transform infrared spectroscopy was used to analyse blood plasma and serum samples from women with endometrial cancer and healthy controls. The 2 populations were differentiated using principal component analysis with support vector machines with 100% sensitivity in plasma samples (endometrial cancer = 70; healthy controls = 15) using both Al foil and low‐E slides as substrates. The same sensitivity results (100%) were achieved for serum samples (endometrial cancer = 60; healthy controls = 15). Specificity was found higher using Al foil (90%) in comparison to low‐E slides (85%) and lower using Al foil (70%) in comparison to low‐E slides in serum samples. The establishment of Al foil as low‐cost and highly performing substrate would pave the way for large‐scale, multicentre studies and potentially for routine clinical use.

  相似文献   


6.
Axonal regeneration after injury to the CNS is hampered by myelin‐derived inhibitors, such as Nogo‐A. Natural products, such as green tea, which are neuroprotective and safe for long‐term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor‐differentiated neuronal‐like Neuroscreen‐1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin‐3‐gallate (EGCG), prevent both the neurite outgrowth‐inhibiting activity and growth cone‐collapsing activity of Nogo‐66 (C‐terminal domain of Nogo‐A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67‐kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N‐acetylcysteine and cell‐permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2O2 in this process. Accordingly, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady‐state generation (1–2 μM), mimicked GTPP in counteracting the action of Nogo‐66. Exogenous H2O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2O2, inhibit the antineuritogenic action of Nogo‐A.

  相似文献   


7.
We investigated the effect of temperature (20, 25 and 30 °C) on fecundity, life span and morphology of the rotifer Brachionus caudatus f. apsteini. For each temperature, short posterior‐spined and long posterior‐spined clones of B. caudatus f. apsteini were individually cultured for up to six generations. The rotifers were fed Chlorella sp. at a density of 1 × 106 cells ml–1. Morphometric data (body size and spine length) were collected. Total number of offspring producing by a single female per life cycle at high temperature was higher than at low temperature. The duration of juvenile period, reproductive period, post‐reproductive period and life span of both clones of B. caudatus f. apsteini decreased with increasing temperature. All offspring of short posterior‐spined clone produce posterior spines at 20 and 25 °C, with an average length of 19.8 ± 6.6 and 11.9 ± 2.6 μm, respectively. In contrast, they cannot develop posterior spines at 30 °C, at which the average length of the posterior spine remnant was 6.4 ± 1.3 μm. On the other hand, all offspring of long posterior‐spined clone have long posterior spines with average lengths of 36.8 ± 6.1, 36.3 ± 5.2 and 36.6 ± 6.2 μm at 20, 25 and 30 °C, respectively. This study indicated that the production of posterior spines can be induced by low temperature and that short posterior‐spined and long posterior‐spined clones are genetically different. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The retromer cargo‐selective complex (CSC) comprising Vps35, Vps29 and Vps26 mediates the endosome‐to‐Golgi retrieval of the cation‐independent mannose 6‐phosphate receptor (CIMPR). Or does it? Recently published data have questioned the validity of this long‐established theory. Here, the evidence for and against a role for the retromer CSC in CIMPR endosome‐to‐Golgi retrieval is examined in the light of the new data that the SNX‐BAR dimer is actually responsible for CIMPR retrieval.   相似文献   

9.
We report a reconstruction method to achieve high spatial resolution for hyperspectral imaging of chromophore features in skin in vivo. The method utilizes an established structure‐adaptive normalized convolution algorithm to reconstruct high spatial resolution of hyperspectral images from snapshot low‐resolution hyperspectral image sequences captured by a snapshot spectral camera. The reconstructed images at chromophore‐sensitive wavebands are used to map the skin features of interest. We demonstrate the method experimentally by mapping the blood perfusion and melanin features (moles) on the facial skin. The method relaxes the constrains of the relatively low spatial resolution in the snapshot hyperspectral camera, making it more usable in imaging applications.  相似文献   

10.
Raman spectroscopy has been proved to be a promising diagnostic technique for various cancers detection. A major drawback for its clinical translation is the intrinsic weakness of Raman effects. Highly sensitive equipment and optimal measurement conditions are generally applied to overcome this drawback. However, these equipment are usually bulky, expensive and may also be easily influenced by surrounding environment. In this preliminary work, a low‐resolution fiber‐optic Raman sensing system is applied to evaluate the diagnostic potential of Raman spectroscopy to identify different bladder pathologies ex vivo. A total number of 262 spectra taken from 32 bladder specimens are included in this study. These spectra are categorized into 3 groups by histopathological analysis, namely normal bladder tissues, low‐grade bladder tumors and high‐grade bladder tumors. Principal component analysis fed artificial neural network are used to train a classification model for the spectral data with 10‐fold cross‐validation and an overall prediction accuracy of 93.1% is obtained. The sensitivities and specificities for normal bladder tissues, low‐grade bladder tumors and high‐grade bladder tumors are 88.5% and 95.1%, 90.3% and 98%, and 97.5% and 96.4%, respectively. These results demonstrate the potential of using a low‐resolution fiber‐optic Raman system for in vivo bladder cancer diagnosis.   相似文献   

11.
Tumor necrosis factor alpha (TNF‐α) is known to exacerbate ischemic brain injury; however, the mechanism is unknown. Previous studies have evaluated the effects of TNF‐α on neurons with long exposures to high doses of TNF‐α, which is not pathophysiologically relevant. We characterized the rapid effects of TNF‐α on basal respiration, ATP production, and maximal respiration using pathophysiologically relevant, post‐stroke concentrations of TNF‐α. We observed a reduction in mitochondrial function as early as 1.5 h after exposure to low doses of TNF‐α, followed by a decrease in cell viability in HT‐22 cells and primary neurons. Subsequently, we used the HT‐22 cell line to determine the mechanism by which TNF‐α causes a rapid and profound reduction in mitochondrial function. Pre‐treating with TNF‐R1 antibody, but not TNF‐R2 antibody, ameliorated the neurotoxic effects of TNF‐α, indicating that TNF‐α exerts its neurotoxic effects through TNF‐R1. We observed an increase in caspase 8 activity and a decrease in mitochondrial membrane potential after exposure to TNF‐α which resulted in a release of cytochrome c from the mitochondria into the cytosol. These novel findings indicate for the first time that an acute exposure to pathophysiologically relevant concentrations of TNF‐α has neurotoxic effects mediated by a rapid impairment of mitochondrial function.

  相似文献   


12.
Artificial cornea is an effective treatment of corneal blindness. Yet, intraocular pressure (IOP) measurements for glaucoma monitoring remain an urgent unmet need. Here, we present the integration of a fiber‐optic Fabry‐Perot pressure sensor with an FDA‐approved keratoprosthesis for real‐time IOP measurements using a novel strategy based on optical‐path self‐alignment with micromagnets. Additionally, an alternative noncontact sensor‐interrogation approach is demonstrated using a bench‐top optical coherence tomography system. We show stable pressure readings with low baseline drift (<2.8 mm Hg) for >4.5 years in vitro and efficacy in IOP interrogation in vivo using fiber‐optic self‐alignment, with good initial agreement with the actual IOP. Subsequently, IOP drift in vivo was due to retroprosthetic membrane (RPM) formation on the sensor secondary to surgical inflammation (more severe in the current pro‐fibrotic rabbit model). This study paves the way for clinical adaptation of optical pressure sensors with ocular implants, highlighting the importance of controlling RPM in clinical adaptation.  相似文献   

13.
Graphene quantum dots (GQDs), the new zero‐dimensional carbon nanomaterial, have been demonstrated as a promising material for biomedical applications due to its good biocompatibility and low toxicity. However, the integration of multiple therapeutic approaches into a nanosized platform based on the GQD has not been explored yet to our best knowledge. In this report, we regulate the generation of reactive oxygen species (ROS) when using the GQD as a photosensitizer by varying the doping amount of nitrogen atoms to achieve efficiency controllable photodynamic therapy. On the other hand, charge‐reversal (3‐Aminopropyl) triethoxysilane (APTES) was used to conjugate on the surface of GQD for nucleus targeting drug delivery for the first time. The treatment outcome of produced ROS and nucleus‐targeting drug delivery was investigated by fluorescence imaging. The results demonstrated that the N‐GQD‐DOX‐APTES in dual roles as a drug carrier and photosensitizer could achieve nucleus‐targeting delivery and strong ROS production simultaneously. This approach provides a promising strategy for the development of multifunctional therapy in one nano platform for biomedical applications.   相似文献   

14.
Several naturally occurring peptides in bovine milk were characterized by tandem mass spectrometry and Edman degradation. Chromatograms of peptide fractions (passed through an ultra‐filtration membrane, nominal molecular weight limit 3000) prepared from colostrum (collected immediately after parturition) and transitional milk (collected 5 days postpartum) showed that they were almost identical. In total, six peptides, αs1‐CN (f16‐23) (RPKHPIKH), αs1‐CN (f16‐24) (RPKHPIKHQ), αs1‐CN (f17‐25) (PKHPIKHQG), αs1‐CN (f46‐52) (VFGKEKV), αs1‐CN (f94‐105) (HIQKEDVPSER), and β‐CN (f121‐128) (HKEMPFPK), were identified. One of the major peptides, the N‐terminal fragment of αs1‐casein, varied structurally during early lactation: αs1‐CN (f17‐25) (PKHPIKHQG) and αs1‐CN (f16‐23) (RPKHPIKH)/αs1‐CN (f16‐24) (RPKHPIKHQ) were found in colostrum and transitional milk, respectively. A chemically synthesized peptide, αs1‐CN (f16‐23) (RPKHPIKH), inhibited apoptosis of bovine granulosa cells induced by serum‐free conditions in a dose‐dependent manner, in consequence of caspase‐3 and caspase‐9 suppressions. The physiological function of the peptide remains unclear, but it may have potential use as pharmaceutical agent and as an anti‐apoptotic agent in cell culture medium. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
In this work, an optofluidic flow analyzer, which can be used to perform malaria diagnosis at the point‐of‐care is demonstrated. The presented technique is based on quantitative optical absorption measurements carried out on a single cell level for a given population of Human Red Blood Cells (RBCs). By measuring the optical absorption of each RBC, the decrease in the Hemoglobin (Hb) concentration in the cytoplasm of the cell due to the invasion of malarial parasite is detected. Cells are assessed on a single cell basis, as they pass through a microfluidic channel. The proposed technique has been implemented with inexpensive off‐the‐shelf components like laser diode, photo‐detector and a micro‐controller. The ability of the optofluidic flow analyzer to asses about 308,049 cells within 3 minutes has been demonstrated. The presented technique is capable of detecting very low parasitemia levels with high sensitivity.

  相似文献   


16.
With a novel asymmetric Schiff‐base zinc complex ZnL (H2L = N‐(3‐methoxysalicylidene)‐N′‐(5‐bromo‐3‐methoxysalicylidene)phenylene‐1,2‐diamine), obtained from phenylene‐1,2‐diamine, 3‐methoxysalicylaldehyde and 5‐bromo‐3‐methoxysalicylaldehyde, as the precursor, a series of heterobinuclear Zn‐Ln complexes [ZnLnL(NO3)3(CH3CN)] (Ln = La, 1; Ln = Nd, 2; Ln = Eu, 3; Ln = Gd, 4; Ln = Tb, 5; Ln = Er, 6; Ln = Yb, 7) were synthesized by the further reaction with Ln(NO3)3·6H2O, and characterized by Fourier transform‐infrared, fast atom bombardment mass spectroscopy and elemental analysis. Photophysical studies of these complexes show that the strong and characteristic near‐infrared luminescence of Nd3+, Yb3+and Er3+ with emissive lifetimes in the microsecond range has been sensitized from the excited state of the asymmetric Schiff‐base ligand due to effective intramolecular energy transfer; the other complexes do not show characteristic emission due to the energy gap between the chromophore and lanthanide ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A highly sensitive chemiluminescence (CL) immunoassay was incorporated into a low‐cost microfluidic paper‐based analytical device (μ‐PAD) to fabricate a facile paper‐based CL immunodevice (denoted as μ‐PCLI). This μ‐PCLI was constructed by covalently immobilizing capture antibody on a chitosan membrane modified μ‐PADs, which was developed by simple wax printing methodology. TiO2 nanoparticles coated multiwalled carbon nanotubes (TiO2/MWCNTs) were synthesized as an amplification catalyst tag to label signal antibody (Ab2). After sandwich‐type immunoreactions, the TiO2/MWCNTs were captured on the surface of μ‐PADs to catalyze the luminol‐p‐iodophenol‐H2O2 CL system, which produced an enhanced CL emission. Using prostate‐specific antigen as a model analyte, the approach provided a good linear response range from 0.001 to 20 ng/mL with a low detection limit of 0.8 pg/mL under optimal conditions. This μ‐PCLI showed good reproducibility, selectivity and stability. The assay results of prostate‐specific antigen in clinical serum samples were in good agreement with that obtained by commercially used electrochemiluminescence methods at the Cancer Research Center of Shandong Tumor Hospital (Jinan, Shandong Province, China). This μ‐PCLI could be very useful to realize highly sensitive, qualitative point‐of‐care testing in developing or developed countries. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This study sought to determine the potential role of microRNAs (miRNAs) in the detrimental effects of cigarette smoke on angiogenesis and neovascularization. Using large‐scale miRNA profiling and qRT‐PCR analyses, we identified let‐7f as a pro‐angiogenic miRNA which expression is significantly reduced in HUVECs treated with cigarette smoke extracts (CSE), and in the ischemic muscles of mice that are exposed to cigarette smoke (MES). In a mouse model of hindlimb ischaemia, intramuscular injection of let‐7f mimic restored ischaemia‐induced neovascularization in MES. Doppler flow ratios and capillary density in ischemic muscles were significantly improved in MES treated with let‐7f mimic. Clinically, this was associated with reduced ambulatory impairment and hindlimb ischaemic damage. Treatment with let‐7f mimic could also rescue pro‐angiogenic cell (PAC) number and function (attachment, proliferation, migration) in MES. ALK5 (TGF‐βR1), an important modulator of angiogenesis, is a target of let‐7f. Here we show that ALK5 is increased in HUVECs exposed to CSE and in the ischaemic muscles of MES. This is associated with a downstream activation of the anti‐angiogenic factors SMAD2/3 and PAI‐1. Importantly, treatment with let‐7f mimic reduces the expression of ALK5, SMAD2/3 and PAI‐1 both in vitro and in vivo. Moreover, let‐7f overexpression or ALK5 inhibition can rescue angiogenesis in HUVECs exposed to CSE. Cigarette smoke exposure is associated with reduced expression of let‐7f and activation of the anti‐angiogenic TGF‐β/ALK5 pathway. Overexpression of let‐7f using a miRNA mimic could constitute a novel therapeutic strategy to improve ischaemia‐induced neovascularization in pathological conditions.  相似文献   

19.
Studies in genetics and ecology often require estimates of relatedness coefficients based on genetic marker data. Many diploid estimators have been developed using either method‐of‐moments or maximum‐likelihood estimates. However, there are no relatedness estimators for polyploids. The development of a moment estimator for polyploids with polysomic inheritance, which simultaneously incorporates the two‐gene relatedness coefficient and various ‘higher‐order’ coefficients, is described here. The performance of the estimator is compared to other estimators under a variety of conditions. When using a small number of loci, the estimator is biased because of an increase in ill‐conditioned matrices. However, the estimator becomes asymptotically unbiased with large numbers of loci. The ambiguity of polyploid heterozygotes (when balanced heterozygotes cannot be distinguished from unbalanced heterozygotes) is also considered; as with low numbers of loci, genotype ambiguity leads to bias. A software, PolyRelatedness , implementing this method and supporting a maximum ploidy of 8 is provided.  相似文献   

20.
Dynamin‐2 is a pleiotropic GTPase whose best‐known function is related to membrane scission during vesicle budding from the plasma or Golgi membranes. In the nervous system, dynamin‐2 participates in synaptic vesicle recycling, post‐synaptic receptor internalization, neurosecretion, and neuronal process extension. Some of these functions are shared with the other two dynamin isoforms. However, the involvement of dynamin‐2 in neurological illnesses points to a critical function of this isoform in the nervous system. In this regard, mutations in the dynamin‐2 gene results in two congenital neuromuscular disorders. One of them, Charcot‐Marie‐Tooth disease, affects myelination and peripheral nerve conduction, whereas the other, Centronuclear Myopathy, is characterized by a progressive and generalized atrophy of skeletal muscles, yet it is also associated with abnormalities in the nervous system. Furthermore, single nucleotide polymorphisms located in the dynamin‐2 gene have been associated with sporadic Alzheimer's disease. In the present review, we discuss the pathogenic mechanisms implicated in these neurological disorders.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号