首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The specific high affinity binding of the avian oviduct progesterone receptor (PR) to target cell nuclei and chromatin has been shown to involve DNA complexed with specific chromatin acceptor proteins. One of these chromatin acceptor proteins has been partially purified and found to be a small hydrophobic protein with a broad pI of 5.0–6.0 [Goldberger and Spelsberg (1988),Biochem. 27, 2103–2109]. Using western immunoblots with anti-RBF-1 polyclonal antibodies to monitor the purification, a 10 kD candidate acceptor protein, termed the Receptor Binding Factor-1 (RBF-1), has been purified to apparent homogeneity. RBF-1 has an amino acid composition consistent with a hydrophobic protein having an acidic pI and a unique N-terminal sequence. Two-dimensional polyacrylamide gel electrophoresis and high-performance capillary electrophoresis support the purity of a protein 10 kD in size, having an acidic pI, but with evidence of several differently charged isoforms. Phosphatase treatment provides evidence that charge heterogeneity may result from variable phosphorylation states. A role of this factor as a candidate acceptor protein in the chromatin acceptor sites for the avian oviduct PR is proposed.  相似文献   

6.
染色质转座酶可及性测序研究进展   总被引:1,自引:0,他引:1  
吴杰  全建平  叶勇  吴珍芳  杨杰  杨明  郑恩琴 《遗传》2020,(4):333-346
染色质转座酶可及性测序(assay for transposase-accessible chromatin with high-throughput sequencing,ATAC-seq)诞生于2013年,具有比脱氧核糖核酸酶I超敏感位点测序(deoxyribonuclease I hypersensitive site sequencing, DNase-seq)和微球菌核酸酶敏感位点测序(micrococcal nuclease sequencing, MNase-seq)更快速、灵敏、简便的优点,是目前分析全基因组范围染色质开放区域的热点技术。通过该技术能获得染色质开放区域的相关信息,从而映射出转录因子等调控蛋白的结合区域和核小体定位等信息,对于研究表观遗传分子机制具有重要意义。本文比较了5种获取染色质开放区域技术的优缺点,重点介绍了ATAC-seq的原理和主要流程,描述了利用ATAC-seq技术研究染色质开放区域的发展概况以及ATAC-seq的相关应用,期望对真核生物全基因组水平的染色质开放区域研究、顺式调控元件鉴定以及遗传调控网络的解析等提供借鉴。  相似文献   

7.
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localization prediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box domain-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.  相似文献   

8.
9.
10.
Summary Nuclear proteins were extracted from isolated nuclei of immature maize kernels. The promoter region (1.5 kb) of the Shrunken gene, which is highly transcribed in the developing endosperm of the kernel, was scanned for protein-DNA interactions. Several promoter fragments showed protein-DNA complex formation in gel retardation experiments. Two different nucleo-protein complexes (MNP1 and MNP2) have been distinguished in competition and DNase I footprinting experiments. Both nuclear DNA-binding activities are able to recognize multiple sites distributed over a 1.5 kb upstream region of the Shrunken gene. Some of the binding sites established in the in vitro reconstitution experiments are located near to DNase I hypersensitive sites found in the promoter of the Shrunken gene (Frommer and Starlinger 1988).  相似文献   

11.
12.
13.
RNA-binding proteins (RBPs) are proteins that bind to the RNA and participate in forming ribonucleoprotein complexes. They have crucial roles in various biological processes such as RNA splicing, editing, transport, maintenance, degradation, intracellular localization and translation. The RBPs bind RNA with different RNA-sequence specificities and affinities, thus, identification of protein binding sites on RNAs (R-PBSs) will deeper our understanding of RNA-protein interactions. Currently, high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP, also known as CLIP-Seq) is one of the most powerful methods to map RNA-protein binding sites or RNA modification sites. However, this method is only used for identification of single known RBPs and antibodies for RBPs are required. Here we developed a novel method, called capture of protein binding sites on RNAs (RPBS-Cap) to identify genome-wide protein binding sites on RNAs without using antibodies. Double click strategy is used for the RPBS-Cap assay. Proteins and RNAs are UV-crosslinked in vivo first, then the proteins are crosslinked to the magnetic beads. The RNA elements associated with proteins are captured, reverse transcribed and sequenced. Our approach has potential applications for studying genome-wide RNA-protein interactions.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号