首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BRCA1 gene mutations are responsible for hereditary breast and ovarian cancers. In sporadic breast tumors, BRCA1 dysfunction or aberrant subcellular localization is thought to be common. BRCA1 is a nuclear-cytoplasm shuttling protein and the reason for cytoplasmic localization of BRCA1 in young breast cancer patients is not yet known. We have previously reported BRCA1 proteins unlike K109R and cancer-predisposing mutant C61G to bind Ubc9 and modulate ER-α turnover. In the present study, we have examined the consequences of altered Ubc9 binding and knockdown on the subcellular localization and growth inhibitory function of BRCA1 proteins. Our results using live imaging of YFP, GFP, RFP-tagged BRCA1, BRCA1a and BRCA1b proteins show enhanced cytoplasmic localization of K109 R and C61G mutant BRCA1 proteins in normal and cancer cells. Furthermore, down-regulation of Ubc9 in MCF-7 cells using Ubc9 siRNA resulted in enhanced cytoplasmic localization of BRCA1 protein and exclusive cytoplasmic retention of BRCA1a and BRCA1b proteins. These mutant BRCA1 proteins were transforming and impaired in their capacity to inhibit growth of MCF-7 and CAL51 breast cancer cells. Interestingly, cytoplasmic BRCA1a mutants showed more clonogenicity in soft agar and higher levels of expression of Ubc9 than parental MCF7 cells. This is the first report demonstrating the physiological link between cytoplasmic mislocalization of mutant BRCA1 proteins, loss of ER-α repression, loss of ubiquitin ligase activity and loss of growth suppression of BRCA1 proteins. Thus, binding of BRCA1 proteins to nuclear chaperone Ubc9 provides a novel mechanism for nuclear import and control of tumor growth.  相似文献   

2.
周纪东  喻晓蔚 《生命科学》2002,14(5):288-290,274
乳腺癌和卵巢癌敏感基因BRCA1和BRCA2与同源重组,DNA损伤修复,胚胎生长,转录调控及遍在蛋白化有关,其中,BRCA1和BRCA2在DNA损伤修复和转录调控中功能的确定,将有助于探讨和阐明两者的肿瘤抑制功能及其机理,作者将综述近年来有关BRCA1和BRCA2在DNA损伤修复和转录调控中功能研究的最新进展。  相似文献   

3.
4.
5.
6.
7.
8.
9.
BRCA1 and BRCA2 bind Stat5a and suppress its transcriptional activity   总被引:3,自引:0,他引:3  
Germline mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2, are thought to account for a large portion of familial breast cancer. The increased risk of breast cancer in women carrying such mutations suggests that these proteins play a critical role in the growth regulation of mammary epithelial cells. Another protein, Stat5a, is known to be essential for growth and terminal differentiation of breast epithelial cells. Here we show that Stat5a forms a complex with both BRCA1 and BRCA2 in breast epithelial cells upon stimulation with prolactin. In addition, we show that the activity of Stat5a on the beta-casein promoter is modulated by both BRCA1 and BRCA2. This interaction may be important during the expansion and terminal differentiation of breast epithelial cells, as happens during pregnancy and lactation.  相似文献   

10.
11.
The objective was to study Dupuytren's myofibroblast cells in constrained collagen matrices in order to more closely emulate their in vivo environment and, to correlate their contractility with α‐smooth muscle actin (α‐SMA) expression and determine if dermal fibroblasts regulate Dupuytren's myofibroblast phenotype. Isotonic and isometric force contraction by cells isolated from Dupuytren's nodules, palmar and non‐palmar skin fibroblasts was measured in collagen matrices. The effect of co‐culturing nodule cells with dermal fibroblasts on isometric contraction was examined. Isometric contraction was correlated with levels of α‐SMA mRNA by pcr and protein by Western blotting, and α‐SMA distribution assessed by immunofluorescence. Dupuytren's nodule cells exhibited similar levels of isotonic contraction to both palmar and non‐palmar dermal fibroblasts. However, nodule cells generated high levels of isometric force (mean: 3.5 dynes/h), which continued to increase over 24 h to a maximum of 173 dynes. In contrast, dermal fibroblasts initially exhibited low levels of contraction (mean: 0.5 dynes/h) and reached tensional homeostasis on average after 15 h (range: 4–20 h), with a maximum force of 52 dynes. Although all three cell types had similar α‐SMA mRNA levels, increased levels of α‐SMA protein were observed in nodule cells compared to dermal fibroblasts. α‐SMA localised to stress fibres in 35% (range: 26–50%) of nodule cells compared to only 3% (range:0–6%) of dermal fibroblasts. Co‐cultures of Dupuytren's cells and dermal fibroblasts showed no contractile differences. The contractile phenotype of Dupuytren's myofibroblasts is determined by increased α‐SMA protein distributed in stress fibres, not by cellular mRNA levels. Dupuytren's cell contractility is not influenced by dermal fibroblasts. J. Cell. Physiol. 224: 681–690, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Insights into the functions of BRCA1 and BRCA2   总被引:17,自引:0,他引:17  
  相似文献   

14.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

15.
16.
Cancer susceptibility and the functions of BRCA1 and BRCA2   总被引:65,自引:0,他引:65  
Venkitaraman AR 《Cell》2002,108(2):171-182
  相似文献   

17.
Eight alternatively spliced isoforms of human 8‐oxoguanine DNA glycosylase (OGG1) (OGG1‐1a to ‐1c and ‐2a to ‐2e) are registered in the National Center for Biotechnology Information. OGG1(s) in mitochondria have not yet been fully characterized biochemically. In this study, we purified mitochondrial recombinant OGG1‐1b protein and compared its activity with nuclear OGG1‐1a protein. The reaction rate constant (kg) of the 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) glycosylase activity of OGG1‐1b was 8‐oxoG:C >> 8‐oxoG:T >> 8‐oxoG:G > 8‐oxoG:A (7.96, 0.805, 0.070, and 0.015 min?1, respectively) and that of the N‐glycosylase/DNA lyase activity (kgl) of OGG1‐1b was 8‐oxoG:C > 8‐oxoG:T ?8‐oxoG:G >> 8‐oxoG:A (0.286, 0.079, 0.040, and negligible min?1, respectively). These reaction rate constants were similar to those of OGG1‐1a except for kgl against 8‐oxoG:A. APEX nuclease 1 was required to promote DNA strand breakage by OGG1‐1b. These results suggest that OGG1‐1b is associated with 8‐oxoG cleavage in human mitochondria and that the mechanism of this repair is similar to that of nuclear OGG1‐1a.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号