首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In non‐hepatic cells, scavenger receptor class B type I (SR‐BI), cluster of differentiation 36 (CD36), and caveolin‐1 were described as mediators of cholesterol efflux, the first step of reverse cholesterol transport (RCT). Stable transformants of HepG2 cells overexpressing SR‐BI, CD36, or caveolin‐1 were generated, as well as cells overexpressing both caveolin‐1 and SR‐BI or caveolin‐1 and CD36 in order to address the effect of caveolin‐1 on both receptor activities. These cells were analyzed for their ability to efflux cholesterol to HDL3. Our results show that overexpressing SR‐BI, CD36, or caveolin‐1 increases cholesterol efflux by 106, 92, and 48%, respectively. Moreover, the dual overexpressions of caveolin‐1 and SR‐BI or caveolin‐1 and CD36 lead to a more prominent increase in cholesterol efflux. Studies were also conducted with primary cultures of SR‐BI knockout (KO), CD36 KO, and SR‐BI/CD36 double‐KO (dKO) mice. SR‐BI KO and SR‐BI/CD36 dKO hepatic cells show 41 and 56% less cholesterol efflux, respectively, than normal hepatic cells. No significant difference was observed between the efflux of normal and CD36 KO cells. The difference between the role of human and murine CD36 correlated with the absence of CD36 dimers in mouse caveolae/rafts. Overall, our results show that SR‐BI is clearly involved in cholesterol efflux in mouse and human hepatic cells, while CD36 plays a significant role in human cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Objective: Scavenger receptor class BI (SR‐BI), authentic high‐density lipoprotein (HDL) receptors expressed in liver, are known to play an important role in HDL‐cholesterol (C) metabolism and reverse cholesterol transport. Interestingly, obese rats of WNIN/Ob strain have abnormally elevated levels of serum HDL‐C compared with their lean counterparts. Based on the well‐established role of SR‐B1 in HDL‐C metabolism, it was hypothesized that these obese rats may have an underexpression of hepatic SR‐B1 receptors. In view of the significant role of vitamin A in energy expenditure and obesity, we also tested whether vitamin A supplementation can correct abnormal HDL‐C metabolism. Research Methods and Procedures: To test this hypothesis, 7‐month‐old male lean and obese rats of WNIN/Ob strain were divided into two groups; each group was subdivided into two subgroups consisting of six lean and six obese rats and received diets containing either 2.6 or 129 mg vitamin A/kg diet for 2 months. Results: At the end, obese rats receiving normal levels of vitamin A diet showed high serum HDL‐C and lower hepatic SR‐BI expression levels compared with lean counterparts. Furthermore, chronic dietary vitamin A supplementation resulted in overexpression of hepatic SR‐BI receptors (protein and gene) with concomitant reduction in serum HDL‐C levels in obese rats. Discussion: Thus, our observations highlight the role of vitamin A in reverse cholesterol transport through up‐regulation of hepatic SR‐BI receptors and, thereby, HDL‐C homeostasis in obese rats of WNIN/Ob strain.  相似文献   

3.
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.  相似文献   

4.
Class B scavenger receptors (SR-Bs) interact with native, acetylated and oxidized low-density lipoprotein (LDL, AcLDL and OxLDL), high-density lipoprotein (HDL3) and maleylated BSA (M-BSA). The aim of this study was to analyze the catabolism of CD36- and LIMPII-analogous-1 (CLA-1), the human orthologue for the scavenger receptor class B type I (SR-BI), and CD36 ligands in HepG2 (human hepatoma) cells. Saturation binding experiments revealed moderate-affinity binding sites for all the SR-B ligands tested with dissociation constants ranging from 20 to 30 microg.mL-1. Competition binding studies at 4 degrees C showed that HDL and modified and native LDL share common binding site(s), as OxLDL competed for the binding of 125I-LDL and 125I-HDL3 and vice versa, and that only M-BSA and LDL may have distinct binding sites. Degradation/association ratios for SR-B ligands show that LDL is very efficiently degraded, while M-BSA and HDL3 are poorly degraded. The modified LDL degradation/association ratio is equivalent to 60% of the LDL degradation ratio, but is three times higher than that of HDL3. All lipoproteins were good cholesteryl ester (CE) donors to HepG2 cells, as a 3.6-4.7-fold CE-selective uptake ([3H]CE association/125I-protein association) was measured. M-BSA efficiently competed for the CE-selective uptake of LDL-, OxLDL-, AcLDL- and HDL3-CE. All other lipoproteins tested were also good competitors with some minor variations. Hydrolysis of [3H]CE-lipoproteins in the presence of chloroquine demonstrated that modified and native LDL-CE were mainly hydrolyzed in lysosomes, whereas HDL3-CE was hydrolyzed in both lysosomal and extralysosomal compartments. Inhibition of the selective uptake of CE from HDL and native modified LDL by SR-B ligands clearly suggests that CLA-1 and/or CD36 are involved at least partially in this process in HepG2 cells.  相似文献   

5.
6.
There is growing evidence that CD36 has an important physiological function in the uptake of oxidized low density lipoprotein (OxLDL) by macrophages. However, the ligand specificity and the nature of the ligands on OxLDL that mediate the binding to CD36 remain ill defined. Results from recent studies suggested that some of the macrophage scavenger receptors involved in the uptake of OxLDL recognized both the lipid and the protein moieties of OxLDL, but there was no conclusive direct evidence for this. The present studies were undertaken to test whether a single, well characterized OxLDL receptor, CD36, could bind both the lipid and protein moieties of OxLDL. COS-7 cells transiently transfected with mouse CD36 cDNA bound intact OxLDL with high affinity. This binding was very effectively inhibited ( approximately 50%) both by the reconstituted apoB from OxLDL and by microemulsions prepared from OxLDL lipids. The specific binding of both moieties to CD36 was further confirmed by direct ligand binding analysis and by demonstrating reciprocal inhibition, i.e. apoB from OxLDL inhibited the binding of the OxLDL lipids and vice versa. Furthermore, a monoclonal mouse antibody that recognizes oxidation-specific epitopes in OxLDL inhibited the binding of intact OxLDL and also that of its purified protein and lipid moieties to CD36. This antibody recognizes the phospholipid 1-palmitoyl 2-(5'-oxovaleroyl) phosphatidylcholine. This model of an oxidized phospholipid was also an effective competitor for the CD36 binding of both the resolubilized apoB and the lipid microemulsions from OxLDL. Our results demonstrate that oxidized phospholipids in the lipid phase or covalently attached to apoB serve as ligands for recognition by CD36 and, at least in part, mediate the high affinity binding of OxLDL to macrophages.  相似文献   

7.
8.
Low-density lipoprotein (LDL)-cholesteryl ester (CE) selective uptake has been demonstrated in nonhepatic cells overexpressing the scavenger receptor class B type I (SR-BI). The role of hepatic SR-BI toward LDL, the main carrier of plasma CE in humans, remains unclear. The aim of this study was to determine if SR-BI, expressed at its normal level, is implicated in LDL-CE selective uptake in human HepG2 hepatoma cells and mouse hepatic cells, to quantify its contribution and to determine if LDL-CE selective uptake is likely to occur in the presence of human HDL. First, antibody blocking experiments were conducted on normal HepG2 cells. SR-BI/BII antiserum inhibited (125)I-LDL and (125)I-HDL(3) binding (10 microg of protein/mL) by 45% (p < 0.05) and CE selective uptake by more than 85% (p < 0.01) for both ligands. Second, HepG2 cells were stably transfected with a eukaryotic vector expressing a 400-bp human SR-BI antisense cDNA fragment. Clone 17 (C17) has a 70% (p < 0.01) reduction in SR-BI expression. In this clone, (3)H-CE-LDL and (3)H-CE-HDL(3) association (10 microg of protein/mL) was 54 +/- 6% and 45 +/- 7% of control values, respectively, while (125)I-LDL and (125)I-HDL(3) protein association was 71 +/- 3% and 58 +/- 5% of controls, resulting in 46% and 55% (p < 0.01) decreases in LDL- and HDL(3)-CE selective uptake. Normalizing CE selective uptake for SR-BI expression reveals that SR-BI is responsible for 68% and 74% of LDL- and HDL(3)-CE selective uptake, respectively. Thus, both approaches show that, in HepG2 cells, SR-BI is responsible for 68-85% of CE selective uptake. Other pathways for selective uptake in HepG2 cells do not require CD36, as shown by anti-CD36 antibody blocking experiments, or class A scavenger receptors, as shown by the lack of competition by poly(inosinic acid). However, CD36 is a functional oxidized LDL receptor on HepG2 cells, as shown by antibody blocking experiments. Similar results for CE selective uptake were obtained with primary cultures of hepatic cells from normal (+/+), heterozygous (-/+), and homozygous (-/-) SR-BI knockout mice. Flow cytometry experiments show that SR-BI accounts for 75% of DiI-LDL uptake, the LDL receptor for 14%, and other pathways for 11%. CE selective uptake from LDL and HDL(3) is likely to occur in the liver, since unlabeled HDL (total and apoE-free HDL(3)) and LDL, when added in physiological proportions, only partially competed for LDL- and HDL(3)-CE selective uptake. In this setting, human hepatic SR-BI may be a crucial molecule in the turnover of both LDL- and HDL(3)-cholesterol.  相似文献   

9.
Cholesteryl esters are selectively removed from high density lipoproteins by hepatocytes and steroidogenic cells through a process mediated by scavenger receptor BI. In the liver this cholesterol is secreted into bile, primarily as free cholesterol. Previous work showed that carboxyl ester lipase enhanced selective uptake of cholesteryl ether from high density lipoprotein by an unknown mechanism. Experiments were performed to determine whether carboxyl ester lipase plays a role in scavenger receptor BI-mediated selective uptake. When added to cultures of HepG2 cells, carboxyl ester lipase cofractionated with scavenger receptor BI and [(3)H]cholesteryl ether-labeled high density lipoprotein in lipid raft fractions of cell homogenates. Confocal microscopy of immunostained carboxyl ester lipase and scavenger receptor BI showed a close association of these proteins in HepG2 cells. The enzyme and receptor also cofractionated from homogenates of mouse liver using two different fractionation methods. Antibodies that block scavenger receptor BI function prevented carboxyl ester lipase stimulation of selective uptake in primary hepatocytes from carboxyl ester lipase knockout mice. Heparin blockage of cell-surface proteoglycans also prevented carboxyl ester lipase stimulation of cholesteryl ester uptake by HepG2 cells. Inhibition of carboxyl ester lipase activity in HepG2 cells reduced hydrolysis of high density lipoprotein-cholesteryl esters approximately 40%. In vivo, hydrolysis was similarly reduced in lipid rafts from the livers of carboxyl ester lipase-null mice compared with control animals. Primary hepatocytes from these mice yielded similar results. The data suggest that carboxyl ester lipase plays a physiological role in hepatic selective uptake and metabolism of high density lipoprotein cholesteryl esters by direct and indirect interactions with the scavenger receptor BI pathway.  相似文献   

10.
Receptors of the scavenger class B family were reported to be localized in caveolae, the cell surface microdomains rich in free cholesterol and glycosphyngolipids, which are characterized by the presence of caveolin-1. Parenchymal hepatic and hepatoma HepG2 cells express very low levels of caveolin-1. In the present study, stable transformants of HepG2 cells expressing caveolin-1 were generated to address the effect of caveolin-1 on receptor activity. Compared to normal cells, these cells show higher (125)I-bovine serum albumin (BSA) uptake and cholesterol efflux, two indicators of functional caveolae. By immunoprecipitation, cell fractionation and confocal analyses, we found that caveolin-1 is well colocalized with the cluster of differentiation-36 (CD36) and the low-density lipoprotein (LDL) receptor (LDLr) but to a lesser extent with the scavenger receptor class B type I (SR-BI) in HepG2 cells expressing caveolin-1. However, caveolin-1 expression favors the dimerization of SR-BI. Two clones of cells expressing caveolin-1 were investigated for their lipoprotein metabolism activity. Compared to normal cells, these cells show a 71-144% increase in (125)I-LDL degradation. The analysis of the cholesteryl esters (CE)-selective uptake (CE association minus protein association) revealed that the expression of caveolin-1 in HepG2 cells decreases by 59%-73% LDL-CE selective uptake and increases high-density lipoprotein (HDL)-CE selective uptake by 44%-66%. We conclude that the expression of caveolin-1 in HepG2 cells moves the balance of LDL degradation/CE selective uptake towards degradation and favors HDL-CE selective uptake. Thus, in the normal hepatic parenchymal situation where caveolin-1 is poorly expressed, LDL-CE selective uptake is the preferred pathway.  相似文献   

11.
Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro‐inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low‐density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR‐A1 and lectin‐like oxLDL receptor‐1 (LOX‐1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase‐1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out‐flowed from macrophages by cholesterol ATP‐binding cassette (ABC) transporters ABCA1 and ABCG1 and SR‐BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.  相似文献   

12.
The novel cytotoxic factor subtilase cytotoxin (SubAB) is produced mainly by non‐O157 Shiga‐toxigenic Escherichia coli (STEC). SubAB cleaves the molecular chaperone BiP/GRP78 in the endoplasmic reticulum (ER), leading to activation of RNA‐dependent protein kinase (PKR)‐like ER kinase (PERK), followed by caspase‐dependent cell death. However, the SubAB uptake mechanism in HeLa cells is unknown. In this study, a variety of inhibitors and siRNAs were employed to characterize the SubAB uptake process. SubAB‐induced BiP cleavage was inhibited by high concentrations of Dynasore, and methyl‐β‐cyclodextrin (mβCD) and Filipin III, but not suppressed in clathrin‐, dynamin I/II‐, caveolin1‐ and caveolin2‐knockdown cells. We observed that SubAB treatment led to dramatic actin rearrangements, e.g. formation of plasma membrane blebs, with a significant increase in fluid uptake. Confocal microscopy analysis showed that SubAB uptake required actin cytoskeleton remodelling and lipid raft cholesterol. Furthermore, internalized SubAB in cells was found in the detergent‐resistant domain (DRM) structure. Interestingly, IPA‐3, an inhibitor of serine/threonine kinase p21‐activated kinase (PAK1), an important protein of macropinocytosis, directly inhibited SubAB‐mediated BiP cleavage and SubAB internalization. Thus, our findings suggest that SubAB uses lipid raft‐ and actin‐dependent, but not clathrin‐, caveolin‐ and dynamin‐dependent pathways as its major endocytic translocation route.  相似文献   

13.
The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence.  相似文献   

14.
Scavenger receptors for oxidized and glycated proteins   总被引:16,自引:0,他引:16  
Horiuchi S  Sakamoto Y  Sakai M 《Amino acids》2003,25(3-4):283-292
Summary. Our present knowledge on chemically modified proteins and their receptor systems is originated from a proposal by Goldstein and Brown in 1979 for the receptor for acetylated LDL which is involved in foam cell formation, one of critical steps in atherogenesis. Subsequent extensive studies using oxidized LDL (OxLDL) as a representative ligand disclosed at least 11 different scavenger receptors which are collectively categorized as scavenger receptor family. Advanced glycation endproducts (AGE) and their receptor systems have been studied independently until recent findings that AGE-proteins are also recognized as active ligands by scavenger receptors including class A scavenger receptor (SR-A), class B scavenger receptors such as CD36 and SR-BI, type D scavenger receptor (LOX-1) and FEEL-1/FEEL-2. Three messages can be summarized from these experiments; (i) endocytic uptake of OxLDL and AGE-proteins by macrophages or macrophage-derived cells is mainly mediated by SR-A and CD36, which is an important step for foam cell formation in the early stage of atherosclerosis, (ii) selective uptake of cholesteryl esters of high density lipoprotein (HDL) mediated by SR-BI is inhibited by AGE-proteins, suggesting a potential pathological role of AGE in a HDL-mediated reverse cholesterol transport system, (iii) a novel scavenger receptor is involved in hepatic clearance of plasma OxLDL and AGE-proteins.  相似文献   

15.
The scavenger receptor CD36 binds a diverse array of ligands, including thrombospondin-1, oxidized low density lipoprotein (OxLDL), fatty acids, anionic phospholipids, and apoptotic cells. CD36 has been reported to be present in lipid rafts/caveolae, but little is known about the membrane trafficking of this protein at baseline or following ligand binding. Here, we determined that expression of CD36 in Chinese hamster ovary (CHO) cells and endogenous expression of CD36 in C32 cells led to a homogeneous distribution of the protein on the plasma membrane, as judged by confocal fluorescence microscopy. This homogeneous pattern was observed both by anti-CD36 antibody staining and by live cell imaging of CHO cells expressing a chimeric CD36-green fluorescent protein construct. In contrast, caveolin-1 displayed its usual punctate surface distribution. Correspondingly, dual labeling of CD36 and caveolin-1 showed essentially no overlap, neither by immunofluorescence light microscopy nor by immunogold electron microscopy. Furthermore, isolation of lipid rafts by sucrose gradient ultracentrifugation of cold Triton X-100 cell lysates yielded both CD36 and caveolin-1, but immunoprecipitates of caveolin-1 did not contain CD36. Binding of Ox-LDL led to internalization of CD36 and OxLDL into endosomal structures that did not contain caveolin-1 or transferrin but that co-internalized the glycosyl-phosphatidylinositol-anchored protein decay accelerating factor, a lipid raft protein. Furthermore, expression of CD36 in the caveolin-1-negative KB cell line is sufficient for OxLDL-induced internalization of CD36, indicating that caveolin-1 is not required for this endocytic process. Taken together, these data demonstrate that at steady state, CD36 is localized in lipid rafts but not in caveolae, and that binding of OxLDL to CD36 leads to endocytosis through a lipid raft pathway that is distinct from the clathrin-mediated or caveolin internalization pathways.  相似文献   

16.
Rapamycin, a mammalian target of rapamycin (mTOR)-specific inhibitor, has the effect of anti-lipid deposition on non-alcoholic fatty liver disease (NAFLD), but the mechanisms with which rapamycin alleviates hepatic steatosis are not fully disclosed. CD36 is known to facilitate long-chain fatty acid uptake and contribute to NAFLD progression. Hepatic CD36 expression is closely associated with hepatic steatosis, while mTOR pathway is involved in CD36 translational control. This study was undertaken to investigate whether rapamycin alleviates hepatic steatosis via the inhibition of mTOR pathway-dependent CD36 translation. Human hepatoblastoma HepG2 cells were treated with palmitate and C57BL/6J mice were fed with high fat diet (HFD) to induce hepatic steatosis. Hepatic CD36 protein expression was significantly increased with lipid accumulation in palmitate-treated HepG2 cells or HFD-fed C57BL/6J mice. Rapamycin reduced hepatic steatosis and CD36 protein expression, but it had no influence on CD36 mRNA expression. Rapamycin had no effect on CD36 protein stability, but it significantly decreased CD36 translational efficiency. We further confirmed that rapamycin inhibited the phosphorylation of mTOR and its downstream translational regulators including p70 ribosomal protein S6 kinase (p70S6K), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and eukaryotic initiation factor 4E (eIF4E). This study demonstrates that rapamycin inhibits hepatic CD36 translational efficiency through the mTOR pathway, resulting in reduction of CD36 protein expression and alleviation of hepatic steatosis.  相似文献   

17.
The effects of di(2‐ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 μM) for 24 or 48 h. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 μM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose‐ and time‐dependent fashion. Proteomic analysis using two different pI ranges (4–7 and 6–9) and large size 2‐DE revealed the presence of 2776 protein spots. A total of 35 (19 up‐ and 16 down‐regulated) proteins were identified as biomarkers of DEHP by ESI‐MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up‐ or down‐regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin‐1, and haptoglobin‐related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.  相似文献   

18.
19.
C-reactive protein (CRP) is present in the atherosclerotic plaques and appears to promote atherogenesis. Intraplaque CRP colocalizes with oxidized low density lipoprotein (OxLDL) and macrophages in human atherosclerotic lesions. Matrix metalloproteinase-9 (MMP-9) has been implicated in plaque rupture. CRP promotes OxLDL uptake and MMP induction in vitro; however, these have not been investigated in vivo. We examined the effect of CRP on OxLDL uptake and MMP-9 production in vivo in Wistar rats. CRP significantly increased OxLDL uptake in the peritoneal and sterile pouch macrophages compared with human serum albumin (huSA). CRP also significantly increased intracellular cholesteryl ester accumulation compared with huSA. The increased uptake of OxLDL by CRP was inhibited by pretreatment with antibodies to CD32, CD64, CD36, and fucoidin, suggesting uptake by both scavenger receptors and Fc-gamma receptors. Furthermore, CRP treatment increased MMP-9 activity in macrophages compared with huSA, which was abrogated by inhibitors to p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), and nuclear factor (NF)-kappaB but not Jun N-terminal kinase (JNK) before human CRP treatment. Because OxLDL uptake by macrophages contributes to foam cell formation and MMP release contributes to plaque instability, this study provides novel in vivo evidence for the role of CRP in atherosclerosis.  相似文献   

20.
Fibronectin (FN) is the foremost proliferation‐associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin‐1 phosphorylation levels in a time‐dependent manner. Phosphorylation of Src, FAK, and caveolin‐1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin‐1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin‐1 siRNA, or the caveolar disruptor methyl‐β‐cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin‐1 siRNA, MβCD, GGTI‐286 (RhoA inhibitor), or Y‐27632 (Rho kinase inhibitor). FN‐induced increase of protooncogenes (c‐fos, c‐myc, and c‐Jun) and cell‐cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin‐1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin‐1, RhoA, Akt, and ERK 1/2 blocked FN‐induced [3H]‐thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA‐PI3K/Akt‐ERK 1/2 pathway through caveolin‐1 phosphorylation. J. Cell. Physiol. 226: 267–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号