首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The formation of γ-H2AX foci after DNA double strand breaks (DSBs) is crucial for the cellular response to this lethal DNA damage. We previously have shown that BRG1, a chromatin remodeling enzyme, facilitates DSB repair by stimulating γ-H2AX formation, and this function of BRG1 requires the binding of BRGI to acetylated histone H3 on γ-H2AX-containing nucleosomes using its bromodomain (BRD), a protein module that specifically recognizes acetyl-Lys moieties. We also have shown that the BRD of BRG1, when ectopically expressed in cells, functions as a dominant negative inhibitor of the BRG1 activity to stimulate γ-H2AX and DSB repair. Here, we found that BRDs from a select group of proteins have no such activity, suggesting that the γ-H2AX inhibition activity of BRG1 BRD is specific. This finding led us to search for more BRDs that exhibit γ-H2AX inhibition activity in the hope of finding additional BRD-containing proteins involved in DNA damage responses. We screened a total of 52 individual BRDs present in 38 human BRD-containing proteins, comprising 93% of all human BRDs. We identified the BRD of cat eye syndrome chromosome region candidate 2 (Cecr2), which recently was shown to form a novel chromatin remodeling complex with unknown cellular functions, as having a strong γ-H2AX inhibition activity. This activity of Cecr2 BRD is specific because it depends on the chromatin binding affinity of Cecr2 BRD. Small interfering RNA knockdown experiments showed that Cecr2 is important for γ-H2AX formation and DSB repair. Therefore, our genomewide screen identifies Cecr2 as a novel DNA damage response protein.  相似文献   

3.
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix (ECM) proteins. B‐type natriuretic peptide (BNP) is anti‐fibrotic, inhibits collagen production, augments matrix metalloproteinases, and suppresses CF proliferation. Recently, we demonstrated that the ECM protein fibronectin (FN) augmented production of BNP's second messenger, 3′, 5′ cyclic guanosine monophosphate (cGMP) in CFs, supporting crosstalk between FN, BNP, and its receptor, natriuretic peptide receptor A (NPR‐A). Here, we address the specificity of FN to augment cGMP generation by investigating other matrix proteins, including collagen IV which contains RGD motifs and collagen I and poly‐L ‐lysine, which have no RGD domain. Collagen IV showed increased cGMP generation to BNP similar to FN. Collagen I and poly‐L ‐lysine had no effect. As FN also interacts with integrins, we then examined the effect of integrin receptor antibody blockade on BNP‐mediated cGMP production. On FN plates, antibodies blocking RGD‐binding domains of several integrin subtypes had little effect, while a non‐RGD domain interfering integrin αvβ3 antibody augmented cGMP production. Further, on uncoated plates, integrin αvβ3 blockade continued to potentiate the BNP/cGMP response. These studies suggest that both RGD containing ECM proteins and integrins may interact with BNP/NPR‐A to modulate cGMP generation. J. Cell. Physiol. 225: 251–255, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Centromere-associated protein E (CENP-E), a core component of the kinetochore, mediates chromosome congression and spindle microtubule capture during mitosis. Partial experimental evidence has illustrated the carcinogenic effects of CENPE in tumors, but the corresponding pan-cancer analysis of CENPE still lacking. Based on public databases, including the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA), we take an array of bioinformatics methods to investigate the potential oncogenic roles of CENPE. Then, we validated CENPE, cell cycle-related proteins, and immune checkpoint molecule findings expression in clinical colon cancer samples by western blot. Our results showed that CENPE was up-regulated in almost all tumors, and the expression level of CENPE was associated with worse overall survival (OS) and disease-specific survival (DSS) in patients. The strong relationship between CENPE with gene mutation and MMR has also been validated. Moreover, CENPE gene expression was positively correlated with immune checkpoint molecular, and reversely correlated with infiltration levels of most immune cells. In the human colon cancer tissues, the expression of CENPE, cell cycle-related proteins, and immune checkpoint molecules were significantly higher than in the adjacent normal tissues. Our results indicated that CENPE can function as an oncogene in various cancers, and may be regarded as a promising prognostic and diagnostic biomarker in cancer treatment.  相似文献   

5.
The extracellular matrix (ECM) is a dynamic component of tissue architecture that physically supports cells and actively influences their behavior. In the context of bone regeneration, cell‐secreted ECMs have become of interest as they reproduce tissue‐architecture and modulate the promising properties of mesenchymal stem cells (MSCs). We have previously created an in vitro model of human osteoblast‐derived devitalized ECM that was osteopromotive for MSCs. The aim of this study was to identify ECM regulatory proteins able to modulate MSC differentiation to broaden the spectrum of MSC clinical applications. To this end, we created two additional models of devitalized ECMs with different mineralization phenotypes. Our results showed that the ECM derived from osteoblast‐differentiated MSCs had increased osteogenic potential compared to ECM derived from undifferentiated MSCs and non‐ECM cultures. Proteomic analysis revealed that structural ECM proteins and ribosomal proteins were upregulated in the ECM from undifferentiated MSCs. A similar response profile was obtained by treating osteoblast‐differentiating MSCs with Activin‐A. Extracellular proteins were upregulated in Activin‐A ECM, whereas mitochondrial and membrane proteins were downregulated. In summary, this study illustrates that the composition of different MSC‐secreted ECMs is important to regulate the osteogenic differentiation of MSCs. These models of devitalized ECMs could be used to modulate MSC properties to regulate bone quality.  相似文献   

6.
Tohse H  Takagi Y  Nagasawa H 《The FEBS journal》2008,275(10):2512-2523
In the biomineralization processes, proteins are thought to control the polymorphism and morphology of the crystals by forming complexes of structural and mineral-associated proteins. To identify such proteins, we have searched for proteins that may form high-molecular-weight (HMW) aggregates in the matrix of fish otoliths that have aragonite and vaterite as their crystal polymorphs. By screening a cDNA library of the trout inner ear using an antiserum raised against whole otolith matrix, a novel protein, named otolith matrix macromolecule-64 (OMM-64), was identified. The protein was found to have a molecular mass of 64 kDa, and to contain two tandem repeats and a Glu-rich region. The structure of the protein and that of its DNA are similar to those of starmaker, a protein involved in the polymorphism control in the zebrafish otoliths [S?llner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C & Nicolson T (2003) Science302, 282-286]. (45)Ca overlay analysis revealed that the Glu-rich region has calcium-binding activity. Combined analysis by western blotting and deglycosylation suggested that OMM-64 is present in an HMW aggregate with heparan sulfate chains. Histological observations revealed that OMM-64 is expressed specifically in otolith matrix-producing cells and deposited onto the otolith. Moreover, the HMW aggregate binds to the inner ear-specific short-chain collagen otolin-1, and the resulting complex forms ring-like structures in the otolith matrix. Overall, OMM-64, by forming a calcium-binding aggregate that binds to otolin-1 and forming matrix protein architectures, may be involved in the control of crystal morphology during otolith biomineralization.  相似文献   

7.
The avidin-biotin technology has many applications, including molecular detection; immobilization; protein purification; construction of supramolecular assemblies and artificial metalloenzymes. Here we present the recombinant expression of novel biotin-binding proteins from bacteria and the purification and characterization of a secreted burkavidin from the human pathogen Burkholderia pseudomallei. Expression of the native burkavidin in Escherichia coli led to periplasmic secretion and formation of a biotin-binding, thermostable, tetrameric protein containing an intra-monomeric disulphide bond. Burkavidin showed one main species as measured by isoelectric focusing, with lower isoelectric point (pI) than streptavidin. To exemplify the potential use of burkavidin in biotechnology, an artificial metalloenzyme was generated using this novel protein-scaffold and shown to exhibit enantioselectivity in a rhodium-catalysed hydrogenation reaction.  相似文献   

8.
Caspase‐2 has been shown to initiate apoptotic cell death in response to specific intracellular stressors such as DNA damage. However, the molecular mechanisms immediately upstream of its activation are still poorly understood. We combined a caspase‐2 bimolecular fluorescence complementation (BiFC) system with fluorophore‐specific immunoprecipitation to isolate and study the active caspase‐2 dimer and its interactome. Using this technique, we found that tumor necrosis factor receptor‐associated factor 2 (TRAF2), as well as TRAF1 and 3, directly binds to the active caspase‐2 dimer. TRAF2 in particular is necessary for caspase‐2 activation in response to apoptotic cell death stimuli. Furthermore, we found that dimerized caspase‐2 is ubiquitylated in a TRAF2‐dependent manner at K15, K152, and K153, which in turn stabilizes the active caspase‐2 dimer complex, promotes its association with an insoluble cellular fraction, and enhances its activity to fully commit the cell to apoptosis. Together, these data indicate that TRAF2 positively regulates caspase‐2 activation and consequent cell death by driving its activation through dimer‐stabilizing ubiquitylation.  相似文献   

9.
Group G streptococcus (GGS) is a human pathogen of emerging clinical significance. It causes skin and soft tissue infections, occasionally resulting in life-threatening conditions such as sepsis and necrotizing fasciitis. We recently identified FOG, a novel surface protein of GGS with fibrinogen binding and immune evasion properties. Here we investigated the role of FOG in streptococcal primary adhesion to host tissue. A FOG-expressing clinical isolate adhered more efficiently to human skin biopsies ex vivo and to the murine dermis in vivo than a FOG-deficient strain. Scanning and transmission electron microscopy of skin specimens exhibited that this property was assigned to the ability of FOG to interact with collagen I, a major interstitial component of the dermis. Overlay experiments with human skin extracts and radiolabeled FOG followed by matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis identified both the alpha1- and alpha2-chains of collagen I as targets for FOG. Transmission electron microscopy of the molecular complexes revealed thread-like FOG molecules binding via their NH2 termini to distinct sites on collagen I monomers and fibrils. The results demonstrate that FOG is important for GGS adhesion in vivo, implying a pathogenic role for this surface protein.  相似文献   

10.
Type XV collagen has a widespread distribution in human tissues, but a nearly restricted localization in basement membrane zones. The alpha1(XV) chain contains a highly interrupted collagenous region of 577 residues, and noncollagenous amino- and carboxyl-terminal domains of 530 and 256 residues, respectively. Cysteines are present in each domain and consensus sequences for O-linked glycosaminoglycans are situated in the amino terminus and in two large, noncollagenous interruptions. We now report that type XV collagen is a chondroitin sulfate proteoglycan in human tissues and cultured cells, and that the alpha chains are covalently linked by interchain disulfide bonds only between the two cysteines in the collagenous region. Western blotting of tissue extracts revealed a diffuse smear with a mean size >/=400 kDa, which after chondroitinase digestion resolved into a 250-kDa band in umbilical cord, and 250- and 225-kDa bands in placenta, lung, colon, and skeletal muscle. The latter two bands were also directly visualized by alcian blue/silver staining of a purified placenta extract. In a human rhabdomyosarcoma cell line, almost all of the newly synthesized type XV collagen was secreted into the medium and upon chondroitinase digestion just the 250-kDa alpha chain was generated. Chondroitinase plus collagenase digestion of tissue and medium proteins followed by Western blotting using domain-specific antibodies revealed a 135-kDa amino-terminal fragment containing glycosaminoglycan chains and a 27-kDa fragment representing the intact carboxyl terminus. However, a truncated carboxyl peptide of approximately 8-kDa was also evident in tissue extracts containing the 225-kDa form. Our data suggest that the 225-kDa form arises from differential carboxyl cleavage of the 250-kDa form, and could explain the approximately 19-kDa endostatin-related fragments (John, H., Preissner, K. T., Forssmann, W.-G., and St?ndker, L. (1999) Biochemistry 38, 10217-10224), which may be liberated from the alpha1(XV) chain.  相似文献   

11.
In order to study the molecular basis of platelet interaction with collagen IV of the basement membrane separating the arterial endothelium from the underlying subendothelial connective tissue, the possibility of presence of platelet membrane protein with affinity to type IV collagen was examined by subjecting the platelet membrane extract to affinity chromatography on collagen IV-sepharose. Urea (4 M) eluate was found to contain a protein with an apparent mol. wt of 68 kDa. The radioiodinated protein was isolated and used to test its specificity. By dot blot assay on nitrocellulose disks and solid-phase assays, the 68 kDa protein was found to bind with high affinity to collagen IV. Lack of significant binding to fibronectin and laminin when compared to albumin control indicated its high specificity for collagen. The radioiodinated protein was inserted into egg yolk lecithin liposomes. While these liposomes attached to microtitre plates coated with collagen IV, there was no significant binding to fibronectin or laminin coated wells, suggesting the membrane associated character of the protein as well as its specificity for collagen. These results indicate that presence of a 68 kDa protein in platelet membrane which interacts with very high specificity to collagen IV.  相似文献   

12.
Chlamydiae are strict intracellular parasites that induce their internalization upon contact with the host cell and grow inside an intracellular compartment called an inclusion. They possess a type III secretion (TTS) apparatus, which allows for the translocation of specific proteins in the host cell cytosol. In particular, chlamydial proteins of the Inc family are secreted to the inclusion membrane by a TTS mechanism; other TTS substrates are mostly unknown. Using a secretion assay based on the recognition of TTS signals in Shigella flexneri, we searched for TTS signals in the proteins of unknown function, conserved between three different chlamydial species, Chlamydia pneumoniae, C. trachomatis and C. caviae. We identified 24 new candidate proteins which did not belong to the Inc family. Four of these proteins were also secreted as full-length proteins by a TTS mechanism in S. flexneri, indicating that their translocation does not require other chlamydial proteins. One of these proteins was detected in the cytosol of infected cells using specific antibodies, directly demonstrating that it is translocated in the host cell during bacterial proliferation. More generally, this work represents the first directed search for TTS effectors not based on genetic information or sequence similarity. It reveals the abundance of proteins secreted in the host cell by chlamydiae.  相似文献   

13.
14.
Hashimoto's encephalopathy (HE) is a rare autoimmune disease associated with Hashimoto's thyroiditis (HT). To identify the HE-related autoantigens, we developed a human brain proteome map using two-dimensional electrophoresis and applied it to the immuno-screening of brain proteins that react with autoantibodies in HE patients. After sequential MALDI-TOF-MASS analysis, immuno-positive spots of 48 kDa (pI 7.3-7.8) detected from HE patient sera were identified as a novel autoimmuno-antigen, alpha-enolase, harboring several modifications. Specific high reactivities against human alpha-enolase were significant in HE patients with excellent corticosteroid sensitivity, whereas the patients with fair or poor sensitivity to the corticosteroid treatment showed less reactivities than cut-off level. Although a few HT patients showed faint reactions to alpha-enolase, 95% of HT patients, patients with other neurological disorders, and healthy subjects tested were all negative. These results suggest that the detection of anti-alpha-enolase antibody is useful for defining HE-related pathology, and this proteomic strategy is a powerful method for identifying autoantigens of various central nervous system diseases with unknown autoimmune etiologies.  相似文献   

15.
Prolylcarboxypeptidase (PRCP) is a serine protease that catalyzes the cleavage of C‐terminal amino acids linked to proline in peptides. It is ubiquitously expressed and is involved in regulating blood pressure, proliferation, inflammation, angiogenesis, and weight maintenance. To identify the candidate proximal target engagement markers for PRCP inhibition in the central nervous system, we profiled the peptidome of human cerebrospinal fluid to look for PRCP substrates using a MS‐based in vitro substrate profiling assay. These experiments identified a single peptide, with the sequence YPRPIHPA, as a novel substrate for PRCP in human cerebrospinal fluid. The peptide YPRPIHPA is from the extracellular portion of human endothelin B receptor‐like protein 2.  相似文献   

16.
The aim of this study was to identify novel biomarkers for the diagnosis of, and potential therapeutic targets for, hepatocellular carcinoma (HCC). Multilectin affinity chromatography was used to enrich N‐linked glycoproteins from nontumorous liver and HCC tissues followed by 2DE and protein identification by MS. Twenty‐eight differentially expressed proteins were identified. Western blotting validated consistently lower concentrations of human liver carboxylesterase 1 and haptoglobin, and higher concentration of procathepsin D (pCD) in HCC tissues. Knockdown of cathepsin D (CD) expression mediated by siRNA significantly inhibited the in vitro invasion of two HCC cell lines, SNU449 and SNU473, which normally secrete high‐levels of CD. Prefractionation using individual lectins demonstrated an elevation in ConA‐binding glycoforms of proCD and CD in HCC tissues. In the serum of HCC patients, “ConA‐binding proCD” (ConA‐pCD) is significantly increased in concentration and this increase is comprised of several distinct upregulated acidic isoforms (pI 4.5–5.5). Receiver operating characteristic analysis showed that the sensitivity and specificity of serum ConA‐pCD for HCC diagnosis were 85% and 80%, respectively. This is the first report that serum ConA‐pCD is increased significantly in HCC and is potentially useful as a serological biomarker for diagnosis of HCC.  相似文献   

17.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

18.
M Collin  A Olsén 《The EMBO journal》2001,20(12):3046-3055
Streptococcus pyogenes is an important human pathogen that selectively interacts with proteins involved in the humoral defense system, such as immunoglobulins and complement factors. In this report we show that S.pyogenes has the ability to hydrolyze the chitobiose core of the asparagine-linked glycan on immuno globulin G (IgG) when bacteria are grown in the presence of human plasma. This activity is associated with the secretion of a novel 108 kDa protein denoted EndoS. EndoS has endoglycosidase activity on purified soluble IgG as well as IgG bound to the bacterial surface. EndoS is required for the activity on IgG, as an isogenic EndoS mutant could not hydrolyze the glycan on IgG. In addition, we show that the secreted streptococcal cysteine proteinase SpeB cleaves IgG in the hinge region in a papain-like manner. This is the first example of an endoglycosidase produced by a bacterial pathogen that selectively hydrolyzes human IgG, and reveals a novel mechanism which may contribute to S.pyogenes pathogenesis.  相似文献   

19.
The bodily decline that occurs with advancing age strongly impacts on the prospects for future health and life expectancy. Despite the profound role of age in disease etiology, knowledge about the molecular mechanisms driving the process of aging in humans is limited. Here, we used an integrative network-based approach for combining multiple large-scale expression studies in blood (2539 individuals) with protein–protein Interaction (PPI) data for the detection of consistently coexpressed PPI modules that may reflect key processes that change throughout the course of normative aging. Module detection followed by a meta-analysis on chronological age identified fifteen consistently coexpressed PPI modules associated with chronological age, including a highly significant module (P = 3.5 × 10−38) enriched for ‘T-cell activation’ marking age-associated shifts in lymphocyte blood cell counts (R2 = 0.603; P = 1.9 × 10−10). Adjusting the analysis in the compendium for the ‘T-cell activation’ module showed five consistently coexpressed PPI modules that robustly associated with chronological age and included modules enriched for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA metabolic process’. In an independent study of 3535 individuals, four of five modules consistently associated with chronological age, underpinning the robustness of the approach. We found three of five modules to be significantly enriched with aging-related genes, as defined by the GenAge database, and association with prospective survival at high ages for one of the modules including ASF1A. The hereby-detected age-associated and consistently coexpressed PPI modules therefore may provide a molecular basis for future research into mechanisms underlying human aging.  相似文献   

20.
The membrane-binding matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) structural precursor Gag (PrGag) protein oligomerizes in solution as a trimer and crystallizes in three dimensions as a trimer unit. A number of models have been proposed to explain how MA trimers might align with respect to PrGag capsid (CA) N-terminal domains (NTDs), which assemble hexagonal lattices. We have examined the binding of naturally myristoylated HIV-1 matrix (MyrMA) and matrix plus capsid (MyrMACA) proteins on membranes in vitro. Unexpectedly, MyrMA and MyrMACA proteins both assembled hexagonal cage lattices on phosphatidylserine-cholesterol membranes. Membrane-bound MyrMA proteins did not organize into trimer units but, rather, organized into hexamer rings. Our results yield a model in which MA domains stack directly above NTD hexamers in immature particles, and they have implications for HIV assembly and interactions between MA and the viral membrane glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号