首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100B is a soluble protein secreted by astrocytes that exerts pro-survival or pro-apoptotic effects depending on the concentration reached in the extracellular millieu. The S100B receptor termed RAGE (for receptor for advanced end glycation products) is highly expressed in the developing brain but is undetectable in normal adult brain. In this study, we show that RAGE expression is induced in cortical neurons of the ischemic penumbra. Increased RAGE expression was also observed in primary cortical neurons exposed to excitotoxic glutamate (EG). S100B exerts effects on survival pathways and neurite extension when the cortical neurons have been previously exposed to EG and these S100B effects were prevented by anti-RAGE blocking antibodies. Furthermore, nuclear factor kappa B (NF-κB) is activated by S100B in a dose- and RAGE-dependent manner and neuronal death induced by NF-κB inhibition was prevented by S100B that restored NF-κB activation levels. Together, these findings suggest that excitotoxic damage can induce RAGE expression in neurons from ischemic penumbra and demonstrate that cortical neurons respond to S100B through engagement of RAGE followed by activation of NF-κB signaling. In addition, basal NF-κB activity in neurons is crucial to modulate the extent of pro-survival or pro-death S100B effects.  相似文献   

2.
3.
4.
CXCL12 and its unique receptor CXCR4, is critical for the homing of a variety of cell lineages during both development and tissue repair. CXCL12 is particularly important for the recruitment of hemato/lymphopoietic cells to their target organs. In conjunction with the damage-associated alarmin molecule HMGB1, CXCL12 mediates immune effector and stem/progenitor cell migration towards damaged tissues for subsequent repair. Previously, we showed that cell migration to HMGB1 simultaneously requires both IKKβ and IKKα-dependent NF-κB activation. IKKβ-mediated activation maintains sufficient expression of HMGB1's receptor RAGE, while IKKα-dependent NF-κB activation ensures continuous production of CXCL12, which complexes with HMGB1 to engage CXCR4. Here using fibroblasts and primary mature macrophages, we show that IKKβ and IKKα are simultaneously essential for cell migration in response to CXCL12 alone. Non-canonical NF-κB pathway subunits RelB and p52 are also both essential for cell migration towards CXCL12, suggesting that IKKα is required to drive non-canonical NF-κB signaling. Flow cytometric analyses of CXCR4 expression show that IKKβ, but not IKKα, is required to maintain a critical threshold level of this CXCL12 receptor. Time-lapse video microscopy experiments in primary MEFs reveal that IKKα is required both for polarization of cells towards a CXCL12 gradient and to establish a basal level of velocity towards CXCL12. In addition, CXCL12 modestly up-regulates IKKα-dependent p52 nuclear translocation and IKKα-dependent expression of the CXCL12 gene. On the basis of our collective results we posit that IKKα is needed to maintain the basal expression of a critical protein co-factor required for cell migration to CXCL12.  相似文献   

5.
6.
7.
Apoptosis is an endogenous process that can be a useful anti-cancer tool. This study aimed to investigate the effect of Cl-IB-MECA, adenosine receptor A3 agonist, on TRAIL-induced apoptosis of thyroid carcinoma cells. Cl-IB-MECA enhanced TRAIL-mediated apoptosis in FRO but not in ARO cells. This effect was correlated to higher expression levels of DR5 on FRO than ARO cells, that instead presented higher levels of decoy receptors, DcR1 and DcR2. To understand the cross-talk between the effect of Cl-IB-MECA and TRAIL, we evaluated the nuclear translocation of p65 and c-Rel. Since the dependency by NF-κB, TRAIL promoted the nuclear translocation of both p65 and c-Rel subunits. However, the addition of Cl-IB-MECA led to the predominant translocation of c-Rel after TRAIL addition. Furthermore, Bcl-2, cFLIP and pAkt were lower induced than caspase-3 and -9 in FRO cells. To discriminate a specific effect of TRAIL, we used tumour necrosis factor-alpha (TNF-α) with Cl-IB-MECA. In this case, no synergism was observed. In addition, the effect of Cl-IB-MECA was not A3 receptor-dependent since its antagonists, MRS1191 and FA385, failed to block Cl-IB-MECA activity on TRAIL-treated FRO cells. In conclusion, Cl-IB-MECA enhanced TRAIL-mediated apoptosis via NF-κB/c-Rel activation and DR5-dependent manner. This study may shed light on a potential drug cocktail that may prove useful as anti-cancer in an in vivo animal model. J. Cell. Physiol. 221: 378–386, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

8.
Nuclear factor κB (NF-κB) plays an important role in the regulation of inflammatory proteins. However, it is unclear whether the NF-κB/intercellular adhesion molecule-1 (ICAM-1) pathway is involved in the adhesion of neutrophils and renal injury after hypoxia–ischemia (HI) in neonates. In this report we investigated whether NF-κB and its downstream molecule ICAM-1 were involved in renal injury induced by postasphyxial serum (PS) from neonates. Human renal proximal tubular (HK-2) cells were preincubated with 10 % fetal calf serum (control), 20 % neonatal PS, or 20 % PS plus pyrolidine dithiocarbamate (PDTC). The expression of IκBα, NF-κB p65, and ICAM-1 in HK-2 cells was determined by Western blot and/or immunohistochemistry. Nuclear translocation of NF-κB p65 in HK-2 cells was detected by immunofluorescence and Western blot. The ICAM-1 mRNA was determined by RT-PCR. Then HK-2 cells were cultured with neutrophils from neonates with asphyxia. After HK-2 cells had been cultured with neutrophils, we detected myeloperoxidase (MPO) activity, the leakage rate of lactate dehydrogenase (LDH), and cell viability. We found that PS preincubation resulted in significantly decreased IκBα expression and increased expression of NF-κB and ICAM-1, and facilitated the nuclear translocation of NF-κB in HK-2 cells. PS preincubation increased MPO activity, leading to elevated leakage rates of LDH and decreased cell viability after neutrophil exposure. Furthermore, the inhibition of NF-κB activity by PDTC significantly upregulated IκBα expression, decreased NF-κB and ICAM-1 expression, downregulated the nuclear translocation of NF-κB, and decreased MPO activity. This leads to decreased leakage rates of LDH and increased cell viability after neutrophil exposure. Our findings suggest that NF-κB/ICAM-1 pathway may be involved in neutrophil–endothelial interactions and neonatal renal injury after HI.  相似文献   

9.
S100A12 is a member of the S100 protein family, which are intracellular calcium-binding proteins. Although there are many reports on the involvement of S100A12 in inflammatory diseases, its presence in osteoarthritic cartilage has not been reported. The purpose of this study was to investigate the expression of S100A12 in human articular cartilage in osteoarthritis (OA) and to evaluate the role of S100A12 in human OA chondrocytes. We analyzed S100A12 expression by immunohistochemical staining of cartilage samples obtained from OA and non-OA patients. In addition, chondrocytes were isolated from knee cartilage of OA patients and treated with recombinant human S100A12. Real-time RT-PCR was performed to analyze mRNA expression. Protein production of matrix metalloproteinase 13 (MMP-13) and vascular endothelial growth factor (VEGF) in the culture medium were measured by ELISA. Immunohistochemical analyses revealed that S100A12 expression was markedly increased in OA cartilages. Protein production and mRNA expression of MMP-13 and VEGF in cultured OA chondrocytes were significantly increased by treatment with exogenous S100A12. These increases in mRNA expression and protein production were suppressed by administration of soluble receptor for advanced glycation end products (RAGE). Both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors also suppressed the increases in mRNA expression and protein production of MMP-13 and VEGF. We demonstrated marked up-regulation of S100A12 expression in human OA cartilages. Exogenous S100A12 increased the production of MMP-13 and VEGF in human OA chondrocytes. Our data indicate the possible involvement of S100A12 in the development of OA by up-regulating MMP-13 and VEGF via p38 MAPK and NF-κB pathways.  相似文献   

10.
Alzheimer’s disease (AD) is the most common cause of dementia. Its pathology often accompanies inflammatory action, and astrocytes play important roles in such procedure. Rela(p65) is one of significant message factors in NF-κB pathway which has been reported high expression in astrocyte treated by Aβ. HupA, an alkaloid isolated from Chinese herb Huperzia serrata, has been widely used to treat AD and observations reflected that it improves memory and cognitive capacity of AD patients. To reveal its molecular mechanisms on p65, we cultured astrocytes, built Aβ-induced AD model, treated astrocytes with HupA at different concentrations, assayed cell viability with MTT, and detected p65 expression by immunohistochemistry and PCR. Our results revealed that treatment with 10 μM Aβ1–42 for 24 h induced a significant increase of NF-κB in astrocytes; HupA significantly down-regulated p65 expression induced by Aβ in astrocytes. This study infers that HupA can regulate NF-κB pathway to treat AD.  相似文献   

11.
The extracellular functions of S100 proteins have attracted more attention in recent years. S100 proteins are a group of calcium-binding proteins which exhibit cell- and tissue-specific expression, and different expression levels of members from this family have been observed in various pathological conditions. The reported extracellular functions of S100 proteins include the ability to enhance neurite outgrowth, involvement in inflammation, and motility of tumour cells. In our previous study, we reported translocation of S100A13 in response to the elevated intracellular calcium levels induced by angiotensin II. In order to investigate potential effects of extracellular S100A13, recombinant S100A13 was used here to stimulate human endothelial cells. Addition of extracellular S100A13 to the cells resulted in both endogenous protein translocation and protein uptake from the extracellular space. To test specificity of this effect, addition of various other S100 proteins was also performed. Interestingly, translocation of specific S100 proteins was only observed when the cells were stimulated with the same extracellular S100 protein. Since the receptor for advanced glycation end products (RAGE) is a putative cell surface receptor for S100 proteins and is involved in various signal transduction pathways, we next investigated the interaction between the receptor and extracellular S100 proteins. We show here that NF-kappaB which is a downstream regulator in RAGE-mediated transduction pathways can be activated by addition of extracellular S100 proteins, and translocation of S100 proteins was inhibited by soluble RAGE. These experiments suggest a common cell surface receptor for S100 proteins on endothelial cells even though intracellular translocation induced by extracellular S100 proteins is specific.  相似文献   

12.
Endometriosis (EM) is a chronic inflammatory disease affecting women aged between 23 and 42 years with a prevalence of 6%–10%. S100A7, a member of the S100 protein family, has been implicated in promoting inflammation. However, the role of S100A7 in EM and its underlying mechanism remain to be elucidated. S100A7 was silenced or overexpressed in primary endometrial stromal cells (ESCs). Cell proliferation was determined using a Cell Counting Kit-8. Cell cycle/apoptosis was monitored using a flow cytometer. Cell invasion was studied by a Transwell assay. Quantitative RT-PCR and Western blot analyses were used to evaluate gene expression. S100A7 and NF-κB expression is increased in both endometriotic tissue and ESCs from women with EM. The expression of S100A7 is correlated with the expression of NF-κB. S100A7 knockdown inhibits ESCs proliferation, cell cycle progression, cell invasion, and inflammation, but promotes cell apoptosis in an NF-κB dependent manner. In contrast, S100A7 overexpression demonstrated an inverse effect. S100A7 is increased in both endometriotic tissue and ESCs from women with EM. S100A7 overexpression contributes to EM through increasing ESCs proliferation, cell cycle progression, cell invasion, and inflammation, and inhibiting cell apoptosis in the NF-κB dependent manner. These findings highlight the importance of S100A7/NF-κB signaling in EM and provide new insights into therapeutic strategies for EM.  相似文献   

13.
This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2–4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2–4 h); III agonist (LP44) 10?9 M (2–4 h); IV antagonist (SB269970) 10?9 M (2–4 h); V LPS+agonist 10?9 M (LP44 1 µg/ml) (2–4 h); VI LPS+antagonist 10?9 M (2–4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.  相似文献   

14.
15.
16.
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/ A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogenactivated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPKdependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer.  相似文献   

17.
Cardiac hormone atrial natriuretic peptide (ANP) and its receptor natriuretic peptide receptor-A (NPR-A) system acts as an intrinsic negative regulator of abnormal extracellular matrix (ECM) remodeling in the heart. However, the underlying mechanism by which ANP/NPR-A system opposes the ECM remodeling in the diseased heart is not well understood. Here, we investigated the anti-fibrotic mechanism of ANP/NPR-A in fibrotic agonist Angiotensin- II (ANG II)-treated adult cardiac fibroblast (CF) cells. Normal and NPR-A-suppressed adult CF cells were treated with ANG II (10?7 M) in the presence and absence of ANP (10?8 M) for 24 h. Total collagen concentration, activity and expression of MMP-2 and MMP-9, and nuclear translocation of Nuclear factor-kappaB (NF-κB-p50) were studied. NPR-A-suppressed adult CF cells exhibited a more pronounced increase in collagen production, ROS generation, and NF-κB-p50 nuclear translocation as compared to adult CF cells treated with agonist alone. ANP co-treatment significantly reverses the agonist-induced above changes in normal adult CF cells, while it failed to reverse the agonist-induced collagen synthesis in the NPR-A-suppressed adult CF cells. The cGMP analog (8-bromo-cGMP) treatment significantly attenuated the agonist-induced collagen synthesis both in normal and NPR-A-suppressed adult cells. The results of this study suggest that ANP/NPR-A signaling system antagonizes the agonist-induced collagen synthesis via suppressing the activities of MMP-2, MMP-9, ROS generation, and NF-κB nuclear translocation mechanism.  相似文献   

18.
In recent years it has become evident that bacteria can modulate signaling pathways in host cells through the secretion of small signaling molecules. We have evaluated the cytotoxic effects and NF-κB inhibitory activities of a panel of quorum sensing molecules and their reactive analogs on Hodgkin's lymphoma cells (L428). We found that several molecules inhibited NF-κB signaling in a dose dependent manner. Three inhibitors (ITC-12, ITC-Cl and Br-Furanone) showed 50% NF-κB inhibition at concentrations less than 10 µM (4.1 µM, 12.8 µM and 9.9 µM, respectively). Furthermore, all three molecules displayed cytotoxic effects against L428 cells with IC50 values of 12.4 µM, 18.3 µM and 3.1 µM respectively after 48 h incubation. They also showed inhibition of A549 adenocarcinoma cell migration at low concentrations 5.6 µM, 2.6 µM and 7.9 µM respectively. Further analysis showed that these molecules significantly decrease the degree of expression of proteins of NF-κB subunits p50, p65 and RelB both in cytosolic and nuclear fractions. This confirms that these compounds have the potential to modulate the NF-κB pathway by suppressing their subunits and thus exhibit cytotoxicity and inactivation of NF-κB signaling in Hodgkin's lymphoma cells.  相似文献   

19.
The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P–cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P–cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P–cromolyn complex.  相似文献   

20.
Ligation of the lymphotoxin-β receptor (LTβR) by LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (TNFSF14)) activates the noncanonical (NC) NF-κB (nuclear factor-κB) pathway and up-regulates CXCL12 gene expression by human umbilical vein endothelial cells (HUVEC). In contrast, TNF only activates classical NF-κB signaling and does not up-regulate CXCL12. To determine whether cross-talk between the classical and NC pathways affects CXCL12 expression, we investigated the effects of TNF on LIGHT signaling in HUVEC. We show here that TNF inhibits both basal and LIGHT-induced CXCL12 expression. Negative regulation by TNF requires the classical NF-κB pathway as inhibition of basal and induced CXCL12 was reversed in HUVEC-expressing dominant negative IκB (inhibitor of NF-κB) kinase (IKK)β (IKKβ(K44M)). TNF did not inhibit the NC NF-κB pathway activation as LIGHT-induced p100 processing to p52 was intact; however, TNF either alone or together with LIGHT up-regulated p100 and RelB expression and induced the nuclear localization of p100-RelB complexes. Enhanced p100 and RelB expression was inhibited by IKKβ(K44M), which led us to question whether the IκB function of elevated p100 mediates the inhibition of CXCL12 expression by TNF. We retrovirally transduced HUVEC to express p100 at a level similar to that up-regulated by TNF; however, basal and LIGHT-induced CXCL12 expression was normal in the transduced cells. In contrast, ectopic RelB expression recapitulated the effects of TNF on NC signaling and inhibited basal and LIGHT-induced CXCL12 expression by HUVEC. Our findings therefore demonstrate that TNF-induced classical NF-κB signaling up-regulates RelB expression that inhibits both basal and NC NF-κB-dependent CXCL12 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号