首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study uses the two developmental fields of dental maturation and femoral growth to determine if the pattern of growth and development in Neandertals (archaic Homo sapiens) was intermediate between that of Homo erectus and recent modern humans. Specimens used in the analysis included Neandertals and Upper Palaeolithic early modern Homo sapiens from Europe and individuals from two recent modern human populations. Ontogenetic data for the H. erectus adolescent KNM-WT 15000 and for Gorilla gorilla were included for comparison. Previous reports have indicated that H. erectus demonstrates a pattern of ontogeny characterized by earlier and more rapid linear growth than in modern humans. Results reported here demonstrate that Upper Paleolithic early modern Homo sapiens display a growth trajectory indistinguishable from that of recent modern humans. The pattern of Neandertal ontogeny is not intermediate between the pattern displayed in H. erectus and the derived pattern seen in the modern reference samples and the early modern H. sapiens sample. The Neandertal growth trajectory is consistent with either slow linear growth or advanced dental development.  相似文献   

2.
The thickness of dental enamel is often discussed in paleoanthropological literature, particularly with regard to differences in growth, health, and diet between Neandertals and modern humans. Paleoanthropologists employ enamel thickness in paleodietary and taxonomic studies regarding earlier hominins, but variation in enamel thickness within the genus Homo has not been thoroughly explored despite its potential to discriminate species and its relevance to studies of growth and development. Radiographic two-dimensional studies indicate that Neandertal molar enamel is thin relative to the thick enamel of modern humans, although such methods have limited accuracy. Here we show that, measured via accurate high-resolution microtomographic imaging, Neandertal molar enamel is absolutely and relatively thinner than modern human enamel at most molar positions. However, this difference relates to the ratio of coronal dentine volume to total crown volume, rather than the quantity of enamel per se. The absolute volume of Neandertal molar enamel is similar to that of modern humans, but Neandertal enamel is deposited over a larger volume of coronal dentine, resulting in lower average (and relative) enamel thickness values. Sample sizes do not permit rigorous intragroup comparisons, but Neandertal molar tissue proportions evince less variation than the modern human sample. Differences in three- and two-dimensional enamel thickness data describing Neandertal molars may be explained by dimensional reduction. Although molar tissue proportions distinguish Neanderthals from recent Homo sapiens, additional study is necessary to assess trends in tissue proportions in the genus Homo throughout the Pleistocene.  相似文献   

3.
Dental development and skeletal growth are central aspects used by anthropologists when investigating the ontogeny of a population or species. The interrelatedness of the two phenomena is often assumed to be high, but the nature of their relationship is obscured by the fact that they are both highly dependent upon chronological age. The exact relationship between the tempo of dental development and skeletal growth is unclear even in modern humans, which limits the ability to extrapolate to archaeological or fossil forms. It is clear that the influence of chronological age on these two aspects of ontogeny must be accounted for before examining their relationship to one another. This study tests whether dental development and skeletal growth are conditionally independent given age using known‐age modern human skeletal samples and proportional odds logistic regression. The results suggest that dental development and skeletal growth are moderately correlated and thus not conditionally independent given age. That is, individuals that are dentally advanced relative to their peers also tend to be skeletally advanced. However, this relationship is moderate at best, so dental development does not appear to be a highly reliable proxy for skeletal growth, or vice versa, in modern humans. These findings have implications for the reconstruction of ontogeny and life history of fossil hominin taxa, since the pace of dental development is often used as a life history proxy. Implications of this study suggest that the proposed accelerated dental development in Pleistocene hominins was not necessarily accompanied by faster skeletal growth. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Studying the emergence of distinctive human growth patterns is essential to understanding the evolution of our species. The large number of Neandertal fossils makes this species the best candidate for a comparative study of growth patterns in archaic and modern humans. Here, Neandertal height growth during infancy and early childhood is described using a mathematical model. Height growth velocities for individuals five years old or younger are modelled as age functions based on different estimates of height and age for a set of ten Neandertal infants and children. The estimated heights of each Neandertal individual are compared with those of two modern human populations based on longitudinal and cross-sectional data. The model highlights differences in growth velocity during infancy (from the age of five months onward). We find that statural growth in Neandertal infants is much slower than that seen in modern humans, Neandertal growth is similar to modern humans at birth, but decreases around the third or fourth month. The markedly slower growth rates of Neandertal infants may be attributable to ontogenetic constraints or to metabolic stress, and contribute to short achieved adult stature relative to modern humans.  相似文献   

5.
Suarez reports a greater magnitude of fluctuating dental asymmetry for Neandertal sample when compared with a sample of modern Ohio whites. He postulates that this greater antimeric variance could be due to a greater degree of inbreeding in the Neandertal populations. In the present investigation, the magnitude of fluctuating dental asymmetry is evaluated for Eskimo and Pueblo populations. These populations were found to exhibit dental variance of equal magnitude to that of the Neandertal population. As these populations are not highly inbred, a stress related mechanism is suggested to explain these observations and the inbreeding hypothesis is rejected. The implications of this mechanism to Brace's Probable Mutation Effect are discussed.  相似文献   

6.
The purpose of this paper is to show that if Brace's hypothesis concerning the role of random mutations in structural reduction (PME) is accepted for the sake of argument, then it cannot be used to explain hominid tooth size reduction since the Mousterian. Specifically it is shown that Brace's Hypothesis implies a smaller variance in dental asymmetry for Neandertal than modern man. Variance analysis reveals that, to the contrary, Neandertal dentitions are more variable than a large sample of modern man's. Finally it is shown that the sequence of dental asymmetry per tooth class is approximately the same in Neandertal as in modern man.  相似文献   

7.
The scarcity of Neandertal remains from Southern Europe hampers our understanding of Neandertal variability, and can bias interpretations about Neandertal geographic variation. To address this issue, it is often important to reassess human remains that, while discovered decades ago, remain relatively unknown to the scientific community. In this contribution, we provide a complete state‐of‐the‐art comparative morphometric analysis of Leuca I, an unworn left second upper molar (LM2) discovered in 1958 in Bambino's Cave (near Santa Maria di Leuca, Apulia, Italy) and attributed to Homo neanderthalensis. Our study includes comparisons of standard metric and nonmetric data, a 2D image analysis of the occlusal surface and measurements of both 2D and 3D enamel thickness and dental tissue proportions. Although Leuca I follows the Neandertal M2s trend in some morphometric aspects (i.e., small relative occlusal polygon area), in other cases it falls to the higher end (for 3D average enamel thickness) or even outside (for 3D‐relative enamel thickness) the Neandertal M2 variability, thus increasing the known Neandertal range of variation. Am J Phys Anthropol 152:300–305, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Two hypotheses, based on previous work on Neandertal anterior and premolar teeth, are investigated here: (1) that estimated molar lateral enamel formation times in Neandertals are likely to fall within the range of modern human population variation, and (2) that perikymata (lateral enamel growth increments) are distributed across cervical and occlusal halves of the crown differently in Neandertals than they are in modern humans. To investigate these hypotheses, total perikymata numbers and the distribution of perikymata across deciles of crown height were compared for Neandertal, northern European, and southern African upper molar mesiobuccal (mb) cusps, lower molar mesiobuccal cusps, and the lower first molar distobuccal (db) cusp. Sample sizes range from five (Neandertal M(1)db) to 29 (southern African M(1)mb). Neandertal mean perikymata numbers were found to differ significantly from those of both modern human samples (with the Neandertal mean higher) only for the M(2)mb. Regression analysis suggests that, with the exception of the M(2)mb, the hypothesis of equivalence between Neandertal and modern human lateral enamel formation time cannot be rejected. For the M(2)mb, regression analysis strongly suggests that this cusp took longer to form in the Neandertal sample than it did in the southern African sample. Plots of perikymata numbers across deciles of crown height demonstrate that Neandertal perikymata are distributed more evenly across the cervical and occlusal halves of molar crowns than they are in the modern human samples. These results are integrated into a discussion of Neandertal and modern human lateral enamel formation across the dentition, with reference to issues of life history and enamel growth processes.  相似文献   

9.
Since its discovery in southeastern Uzbekistan in 1938, the Teshik-Tash child has been considered a Neandertal. Its affinity is important to studies of Late Pleistocene hominin growth and development as well as interpretations of the Central Asian Middle Paleolithic and the geographic distribution of Neandertals. A close examination of the original Russian monograph reveals the incompleteness of key morphologies associated with the cranial base and face and problems with the reconstruction of the Teshik-Tash cranium, making its Neandertal attribution less certain than previously assumed. This study reassesses the Neandertal status of Teshik-Tash 1 by comparing it to a sample of Neandertal, Middle and Upper Paleolithic modern humans, and recent human sub-adults. Separate examinations of the cranium and mandible are conducted using multinomial logistic regression and discriminant function analysis to assess group membership. Results of the cranial analysis group Teshik-Tash with Upper Paleolithic modern humans when variables are not size-standardized, while results of the mandibular analysis place the specimen with recent modern humans for both raw and size-standardized data. Although these results are influenced by limitations related to the incomplete nature of the comparative sample, they suggest that the morphology of Teshik-Tash 1 as expressed in craniometrics is equivocal. Although, further quantitative studies as well as additional sub-adult fossil finds from this region are needed to ascertain the morphological pattern of this specimen specifically, and Central Asian Middle Paleolithic hominins in general, these results challenge current characterizations of this territory as the eastern boundary of the Neandertal range during the Late Pleistocene.  相似文献   

10.
Many organisms express discrete alternative phenotypes (polyphenisms) in relation to predictable environmental variation. However, the evolution of alternative life‐history phenotypes remains poorly understood. Here, we analyze the evolution of alternative life histories in seasonal environments by using temperate insects as a model system. Temperate insects express alternative developmental pathways of diapause and direct development, the induction of a certain pathway affecting fitness through its life‐history correlates. We develop a methodologically novel and holistic simulation model and optimize development time, growth rate, body size, reproductive effort, and adult life span simultaneously in both developmental pathways. The model predicts that direct development should be associated with shorter development time (duration of growth) and adult life span, higher growth rate and reproductive effort, smaller body size as well as lower fecundity compared to the diapause pathway, because the two generations divide the available time unequally. These predictions are consistent with many empirical data. Our analysis shows that seasonality alone can explain the evolution of alternative life histories.  相似文献   

11.
Previous studies have suggested that Neandertals experienced greater physiological stress and/or were less capable of mitigating stress than most prehistoric modern human populations. The current study compares estimates of dental fluctuating asymmetry (DFA) for prehistoric Inupiat from Point Hope Alaska, the Late Archaic, and Protohistoric periods from Ohio and West Virginia, and a modern sample from Ohio to Neandertals from Europe and Southwest Asia. DFA results from developmental perturbation during crown formation and is thus an indicator of developmental stress, which previous studies have found to be higher in Neandertals than in several modern human populations. Here, we use recent methodological improvements in the analysis of fluctuating asymmetry suggested by Palmer and Strobeck (Annu Rev Ecol Syst 17 ( 1986 ) 391–421, Developmental instability: causes and consequences ( 2003a ) v.1–v.36, Developmental instability: causes and consequences ( 2003b ) 279–319) and compare the fit of Neandertal DFA Index values with those of modern humans. DFA estimates for each of the modern population samples exceeded measurement error, with the Inupiat exhibiting the highest levels of DFA for most tooth positions. All significant Neandertal z‐scores were positive, exceeding the estimates for each of the modern prehistoric groups. Neandertals exhibited the fewest significant differences from the Inupiat (9.2% of values are significant at P < 0.05), while for the other modern prehistoric groups more than 10% of the Neandertal z‐scores are significant at P < 0.05, more than 90% of these significant scores at P < 0.01. These results suggest that the Inupiat experienced greater developmental stress than the other prehistoric population samples, and that Neandertals were under greater developmental stress than all other prehistoric modern human samples. Am J Phys Anthropol 149:193–204, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
No evidence of Neandertal mtDNA contribution to early modern humans   总被引:2,自引:1,他引:1  
The retrieval of mitochondrial DNA (mtDNA) sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.  相似文献   

13.
This article uses data on the dental eruption pattern and life history of Tarsius to test the utility of Schultz's rule. Schultz's rule claims a relationship between the relative pattern of eruption and the absolute pace of dental development and life history and may be useful in reconstructing life histories in extinct primates. Here, we document an unusual eruption pattern in Tarsius combining early eruption (relative to molars) of anterior replacement teeth (P2 and incisors) and relatively late eruption of the posterior replacement teeth (C, P3, and P4). This eruption pattern does not accurately predict the "slow" pace of life documented for Tarsius [Roberts: Int J Primatol 15 (1994) 1-28], nor aspects of life history directly associated with dental development as would be expected using Schultz's rule. In Tarsius, the anterior teeth and M1 erupt at an early age and therefore are not only fast in a relative sense but also fast in an absolute sense. This seems to be related to a developmental anomaly in the deciduous precursor teeth, which are essentially skipped. This decoupling among dental eruption pattern, dental eruption pace, and life history pace in Tarsius undermines the assumptions that life histories can accurately be described as "fast" or "slow" and that dental eruption pattern alone can be used to infer overall life history pace. The relatively and absolutely early eruption of the anterior dentition may be due to the utility of these front teeth in early food acquisition rather than with the pace of life history.  相似文献   

14.
The formation of lateral enamel in Neandertal anterior teeth has been the subject of recent studies. When compared to the anterior teeth of modern humans from diverse regions (Point Hope, Alaska; Newcastle upon Tyne, England; southern Africa), Neandertal anterior teeth appear to fall within the modern human range of variation for lateral enamel formation time. However, the lateral enamel growth curves of Neandertals are more linear than those of these modern human samples. Other researchers have found that the lateral enamel growth curves of Neandertals are more linear than those of Upper Paleolithic and Mesolithic modern humans as well. The statistical significance of this apparent difference between Neandertal and modern human lateral enamel growth curves is analyzed here. The more linear Neandertal enamel growth curves result from the smaller percentage of total perikymata located in the cervical halves of their teeth. The percentage of total perikymata in the cervical halves of teeth is therefore compared between the Neandertal sample (n=56 teeth) and each modern human population sample: Inuit (n=65 teeth), southern African (n=114 teeth), and northern European (n=115 teeth). There are 18 such comparisons (6 tooth types, Neandertals vs. each of the three modern human populations). Eighteen additional comparisons are made among the modern human population samples. Statistically significant differences are found for 16 of the 18 Neandertal vs. modern human comparisons but for only two of the 18 modern human comparisons. Statistical analyses repeated for subsamples of less worn teeth show a similar pattern. Because surface curvature is thought to affect perikymata spacing, we also conducted measurements to assess surface curvature in thirty teeth. Our analysis shows that surface curvature is not a factor in this lateral enamel growth difference between Neandertals and modern humans.  相似文献   

15.
The Tsimane Health and Life History Project, an integrated bio‐behavioral study of the human life course, is designed to test competing hypotheses of human life‐history evolution. One aim is to understand the bidirectional connections between life history and social behavior in a high‐fertility, kin‐based context lacking amenities of modern urban life (e.g. sanitation, banks, electricity). Another aim is to understand how a high pathogen burden influences health and well‐being during development and adulthood. A third aim addresses how modernization shapes human life histories and sociality. Here we outline the project's goals, history, and main findings since its inception in 2002. We reflect on the implications of current findings and highlight the need for more coordinated ethnographic and biomedical study of contemporary nonindustrial populations to address broad questions that can situate evolutionary anthropology in a key position within the social and life sciences.  相似文献   

16.
As a dental indicator of generalized physiological stress, enamel hypoplasia has been the subject of several Neandertal studies. While previous studies generally have found high frequencies of enamel hypoplasia in Neandertals, the significance of this finding varies with frequencies of enamel hypoplasia in comparative samples. The present investigation was undertaken to ascertain if the enamel hypoplasia evidence in Neandertals suggests a high level of physiological stress relative to a modern human foraging group, represented here by an archaeological sample of Inuit from Point Hope, Alaska. Unlike previous studies, this study focused specifically on linear enamel hypoplasia (LEH), emphasizing systemic over localized causes of this defect by considering LEH to be present in an individual only if LEH defects occur on two anterior teeth with overlapping crown formation periods. Moreover, this study is the first to evaluate the average growth disruption duration represented by these defects in Neandertals and a comparative foraging group. In the prevalence analysis, 7/18 Neandertal individuals (from Krapina and southern France) and 21/56 Neandertal anterior teeth were affected by LEH, or 38.9% and 37.5% respectively. These values do not differ significantly from those of the Inuit sample in which 8/21, or 38.1% of individuals, and 32/111, or 28.8% of anterior teeth were affected. For the growth disruption duration analysis, 22 defects representing separate episodes of growth disruption in Neandertals were compared with 22 defects in the Inuit group using three indicators of duration: the number of perikymata (growth increments) in the occlusal walls of LEH defects, the total number of perikymata within them, and defect width. Only one indicator, the total number of perikymata within defects, differed significantly between the Inuit and Neandertal groups (an average of 13.4 vs. 7.3 perikymata), suggesting that if there is any difference between them, the Inuit defects may actually represent longer growth disruptions than the Neandertal defects. Thus, while stress indicators other than linear enamel hypoplasia may eventually show that Neandertal populations were more stressed than those of modern foragers, the evidence from linear enamel hypoplasia does not lend support to this idea.  相似文献   

17.
Human remains associated with the earliest Upper Paleolithic industries are sparse. What is preserved is often fragmentary, making it difficult to accurately assign them to a particular species. For some time it has been generally accepted that Neandertals were responsible for the Chatelperronian and anatomically modern humans for the early Aurignacian industries. However, the recent re-dating of several of the more-complete modern human fossils associated with the early Aurignacian (e.g., Vogelherd) has led some to question the identity of the makers and the context of these early Upper Paleolithic industries. The Grotte du Renne at Arcy-sur-Cure, France has yielded many hominin remains, from Mousterian, Chatelperronian, Aurignacian, and Gravettian layers. Previously, a child's temporal bone from the Chatelperronian Layer Xb was recognized as belonging to a Neandertal; however, most of the teeth from Chatelperronian layers VIII-X remain unpublished. We describe the dental remains from the Chatelperronian layers, place them in a comparative (Mousterian Neandertal and Upper Paleolithic modern human) context, and evaluate their taxonomic status. The teeth (n = 29) represent a minimum of six individuals aged from birth to adult. The permanent dental sample (n = 15) from the Chatelperronian layers of Arcy-sur-Cure exhibits traits (e.g., lower molar mid-trigonid crest) that occur more frequently in Neandertals than in Upper Paleolithic modern humans. Furthermore, several teeth show trait combinations, including Cusp 6/mid-trigonid crest/anterior fovea in the lower second molar, that are rare or absent in Upper Paleolithic modern humans. The deciduous teeth (n = 14) significantly increase the sample of known deciduous hominin teeth and are more similar to Mousterian Neandertals from Europe and Asia than to Upper Paleolithic modern humans. Thus, the preponderance of dental evidence from the Grotte du Renne strongly supports that Neandertals were responsible for the Chatelperronian industry at Arcy-sur-Cure.  相似文献   

18.
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.  相似文献   

19.
The life histories of early hominins are commonly characterized as being like those of great apes. However, the life histories of the extant great apes differ considerably from one another. Moreover, the extent to which their life histories correlate with the two aspects of morphology used to infer the life histories of fossil species, brain size and dental development, has remained subject to debate. Increased knowledge of great ape life histories and, more recently, dental development —in particular ages at first molar emergence— now make it clearer that the latter is strongly associated with important life-history attributes, whereas brain size, as reflected by cranial capacity, is less informative. Here we estimate ages at M1 emergence in several infant/juvenile individuals of Australopithecus and Paranthropus based on previous estimates of ages at death, determined through dental histology. These are uniformly earlier than would be predicted either by adult cranial capacity or by comparison to ages at M1 emergence in free-living extant great apes. This suggests that either, 1) the life histories of the early hominins were faster than those of all extant great apes; 2) there was selection for rapid initial dental development and presumably early weaning, but that early hominin life histories were otherwise more prolonged and consistent with adult cranial capacities; or 3) the ages at death have been systematically underestimated, resulting in underestimates of the ages at M1 emergence. We investigate the implications of each of these alternatives and, where possible, explore evidence that might support one over the others.  相似文献   

20.
Twenty‐five years ago, the Middle‐to‐Upper Paleolithic transition in Europe could be represented as a straightforward process subsuming both the emergence of symbolic behavior and the replacement of Neandertals by modern humans. The Aurignacian was a proxy for the latter, during which enhanced cognitive capabilities explained ornaments and art. The few instances of Neandertal symbolism were deemed to long postdate contact and dismissed as “imitation without understanding,” if not geological contamination. Such views were strengthened by the recent finding that, in southern Africa, several features of the European Upper Paleolithic, including bone tools, ornaments, and microliths, emerged much earlier. Coupled with genetic suggestions of a recent African origin for extant humans, fossil discoveries bridging the transition between “archaics” and “moderns” in the realm of anatomy (Omo‐Kibish, Herto) seemingly closed the case. Over the last decade, however, taphonomic critiques of the archeology of the transition have made it clear that, in Europe, fully symbolic sapiens behavior predates both the Aurignacian and moderns. And, in line with evidence from the nuclear genome rejecting strict replacement models based on mtDNA alone, the small number of early modern specimens that passed the test of direct dating present archaic features unknown in the African lineage, suggesting admixture at the time of contact. In the realm of culture, the archeological evidence also supports a Neandertal contribution to Europe's earliest modern human societies, which feature personal ornaments completely unknown before immigration and are characteristic of such Neandertal‐associated archeological entities as the Châtelperronian and the Uluzzian. The chronometric data suggest that, north of the Ebro divide, the entire interaction process may have been resolved within the millennium centered around 42,000 calendar years ago. Such a rapid absorption of the Neandertals is consistent with the size imbalance between the two gene reservoirs and further supports significant levels of admixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号