首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vangl1 and Vangl2 are integral membrane proteins that play a critical role in establishing planar cell polarity (PCP) in epithelial cells and are required for convergent extension (CE) movements during embryogenesis. Their proper targeting to the plasma membrane (PM) is required for function. We created discrete deletions at the amino and carboxy termini of Vangl1 and monitored the effect of the mutations on PM targeting in Madin–Darby canine kidney cells. Our results show that the Vangl1 amino terminus lacks PM targeting determinants, and these are restricted to the carboxy terminus, including the predicted PDZBM motif at the C‐terminus.  相似文献   

3.
4.
Planar cell polarity (PCP) controls the orientation of cells within tissues and the polarized outgrowth of cellular appendages. So far, six PCP core proteins including the transmembrane proteins Frizzled (Fz), Strabismus (Stbm) and Flamingo (Fmi) have been identified. These proteins form asymmetric PCP domains at apical junctions of epithelial cells. Here, we demonstrate that VhaPRR, an accessory subunit of the proton pump V‐ATPase, directly interacts with the protocadherin Fmi through its extracellular domain. It also shows a striking co‐localization with PCP proteins during all pupal wing stages in Drosophila. This localization depends on intact PCP domains. Reversely, VhaPRR is required for stable PCP domains, identifying it as a novel PCP core protein. VhaPRR performs an additional role in vesicular acidification as well as endolysosomal sorting and degradation. Membrane proteins, such as E‐Cadherin and the Notch receptor, accumulate at the surface and in intracellular vesicles of cells mutant for VhaPRR. This trafficking defect is shared by other V‐ATPase subunits. By contrast, the V‐ATPase does not seem to have a direct role in PCP regulation. Together, our results suggest two roles for VhaPRR, one for PCP and another in endosomal trafficking. This dual function establishes VhaPRR as a key factor in epithelial morphogenesis.  相似文献   

5.
Since the first implication of the core planar cell polarity (PCP) pathway in stereocilia orientation of sensory hair cells in the mammalian cochlea, much has been written about this subject, in terms of understanding how this pathway can shape the mammalian hair cells and using the inner ear as a model system to understand mammalian PCP signaling. However, many conflicting results have arisen, leading to puzzling questions regarding the actual mechanism and roles of core PCP signaling in mammals and invertebrates. In this review, we summarize our current knowledge on the establishment of PCP during inner ear development and revisit the contrast between wing epithelial cells in Drosophila melanogaster and sensory epithelia in the mammalian cochlea. Notably, we focus on similarities and differences in the asymmetric distribution of core PCP proteins in the context of cell autonomous versus non-autonomous role of PCP signaling in the two systems. Additionally, we address the relationship between the kinocilium position and PCP in cochlear hair cells and increasing results suggest an alternate cell autonomous pathway in regulating PCP in sensory hair cells.  相似文献   

6.
The slope of a supracellular molecular gradient has long been thought to orient and coordinate planar cell polarity (PCP). Here we demonstrate and measure that gradient. Dachsous (Ds) is a conserved and elemental molecule of PCP; Ds forms intercellular bridges with another cadherin molecule, Fat (Ft), an interaction modulated by the Golgi protein Four-jointed (Fj). Using genetic mosaics and tagged Ds, we measure Ds in vivo in membranes of individual cells over a whole metamere of the Drosophila abdomen. We find as follows. (i) A supracellular gradient rises from head to tail in the anterior compartment (A) and then falls in the posterior compartment (P). (ii) There is more Ds in the front than the rear membranes of all cells in the A compartment, except that compartment''s most anterior and most posterior cells. There is more Ds in the rear than in the front membranes of all cells of the P compartment. (iii) The loss of Fj removes intracellular asymmetry anteriorly in the segment and reduces it elsewhere. Additional experiments show that Fj makes PCP more robust. Using Dachs (D) as a molecular indicator of polarity, we confirm that opposing gradients of PCP meet slightly out of register with compartment boundaries.  相似文献   

7.
The internal left‐right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna‐like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development.  相似文献   

8.
Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.  相似文献   

9.
Abstract

Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40?years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.  相似文献   

10.
The Drosophila eye and the wing display specific planar cell polarity. Although Frizzled (Fz) signaling has been implicated in the establishment of ommatidial and wing hair polarity, evidence for the Wnt gene function has been limited. Here we examined the function of a Drosophila homolog of Wnt4 (DWnt4) in the control of planar polarity. We show that DWnt4 mRNA and protein are preferentially expressed in the ventral region of eye disc. DWnt4 mutant eyes show polarity reversals mostly in the ventral domain, consistent with the ventral expression of DWnt4. Ectopic expression of DWnt4 in the dorsoventral (DV) polar margins is insufficient to induce ommatidial polarity but becomes inductive when coexpressed with Four-jointed (Fj). Similarly, DWnt4 and Fj result in synergistic induction of hair polarity toward the source of expression in the wing. Consistent with genetic interaction, we provide evidence for direct interaction of DWnt4 and Fj transmembrane protein. The extracellular domain of Fj is required for direct binding to DWnt4 and for the induction of hair polarity. In contrast to the synergy between DWnt4 and Fj, DWnt4 antagonizes the polarizing effect of Fz. Our results suggest that DWnt4 is involved in ommatidial polarity signaling in the ventral region of the eye and its function is mediated by interacting with Fj.  相似文献   

11.
Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs.  相似文献   

12.
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

13.
《Organogenesis》2013,9(1):86-95
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   

14.
15.
During large‐scale examinations of male genitalia for taxonomic studies of Sericini chafers (Coleoptera: Scarabaeidae), we have found that reversals of directed left–right (LR) asymmetry in male copulatory organs are compared to other insects not common. However, such inversions do occur occasionally and they must be considered a significant ‘source of error’ in taxonomic studies. Our data indicate asymmetry reversal of male genitalia affects only the abdominal segments (genitalia) as changes in asymmetric structures of the head and thorax were not observed. Based on these observations, we believe that this partial abdominal LR asymmetry reversal of terminalia could be due to a local change in the polarity determining LR patterning in the growth zone of posterior abdominal segments as development of these segments begins.  相似文献   

16.
17.
Sensory epithelia of the inner ear require a coordinated alignment of hair cell stereociliary bundles as an essential element of mechanoreceptive function. Hair cell bundle alignment is mediated by core planar cell polarity (PCP) proteins, such as Vangl2, that localize asymmetrically to the circumference of the cell near its apical surface. During early phases of cell orientation in the chicken basilar papilla (BP), Vangl2 is present at supporting cell junctions that lie orthogonal to the polarity axis. Several days later, there is a striking shift in the Vangl2 pattern associated with hair cells that reorient towards the distal (apical) end of the organ. How the localization of PCP proteins transmits planar polarity information across the developing sensory epithelium remains unclear. To address this question, the normal asymmetric localization of Vangl2 was disrupted by overexpressing Vangl2 in clusters of cells. The BP was infected with replication-competent retrovirus encoding Vangl2 prior to hair cell differentiation. Virus-infected cells showed normal development of individual stereociliary bundles, indicating that asymmetry was established at the cellular level. Yet, bundles were misoriented in ears infected with Vangl2 virus but not Wnt5a virus. Notably, Vangl2 misexpression did not randomize bundle orientations but rather generated larger variations around a normal mean angle. Cell clusters with excess Vangl2 could induce non-autonomous polarity disruptions in wild-type neighboring cells. Furthermore, there appears to be a directional bias in the propagation of bundle misorientation that is towards the abneural edge of the epithelium. Finally, regional bundle reorientation was inhibited by Vangl2 overexpression. In conclusion, ectopic Vangl2 protein causes inaccurate local propagation of polarity information, and Vangl2 acts in a non-cell-autonomous fashion in the sensory system of vertebrates.  相似文献   

18.
Sfrp is a secreted Wnt antagonist that directly interacts with Wnt ligand. We show here that inactivation of Sfrp1, Sfrp2, and Sfrp5 leads to fused somites formation in early-somite mouse embryos, simultaneously resulting in defective convergent extension (CE), which causes severe shortening of the anteroposterior axis. These observations indicate the redundant roles of Sfrp1, Sfrp2, and Sfrp5 in early trunk formation. The roles of the Sfrps were genetically distinguished in terms of the regulation of Wnt pathways. Genetic analysis combining Sfrps mutants and Loop-tail mice revealed the involvement of Sfrps in CE through the regulation of the planar cell polarity pathway. Furthermore, Dkk1-deficient embryos carrying Sfrp1 homozygous and Sfrp2 heterozygous mutations display irregular somites and indistinct intersomitic boundaries, which indicates that Sfrps-mediated inhibition of the Wnt/beta-catenin pathway is necessary for somitogenesis. Our results suggest that Sfrps regulation of the canonical and noncanonical pathways is essential for proper trunk formation.  相似文献   

19.
Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro‐inflammatory, suggesting that the establishment of endothelial polarity elicits an anti‐inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR‐3, is an essential gatekeeper of GSK3β activity in response to laminar blood flow. We show that flow‐induced spatial distribution of PAR‐3/aPKCλ and aPKCλ/GSK3β complexes controls local GSK3β activity and thereby regulates endothelial planar polarity. The spatial information for GSK3β activation is essential for flow‐dependent polarity to the flow axis, but is not necessary for flow‐induced anti‐inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.  相似文献   

20.
The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point — the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号