首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton‐top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree‐gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade‐off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross‐sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer‐fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade‐off between muscle excursion/contraction velocity and muscle force suggests that primate jaw‐muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Dynamics of myofiber differentiation/maturation in porcine skeletal muscle is associated with domestication, breeding and rearing conditions. This study was aimed to comparatively elucidate the age-dependent myosin heavy chain (MyHC) isoform expression and transition pattern in domestic and wild pig (WP) skeletal muscle from birth until adulthood. Domestic pigs (DPs) of Large White breed raised in conventional production system were compared with WPs reared in a large hunting enclosure. Muscle samples for immuno/enzyme histochemistry were taken from the longissimus dorsi muscle within 24 h postmortem at 24 to 48 h, 21 to 23 days, 7 months and ~2 years postpartum. Based on the antibody reactivity to MyHCs (NCL-MHCs, A4.74, BF-F3) and succinate dehydrogenase activity, myofibers were classified into I, I/IIa, IIa, IIx and IIb types. In addition, foetal MyHC expression was determined with the use of F158.4C10 antibody. Maturation of the longissimus dorsi muscle in the WP was characterized by an accelerated transformation of the fast to slow MyHC during the first hours postpartum, followed by differentiation towards oxidative myofibers in which type I, IIa and IIx MyHCs predominated. In the DP, the transformation shifted towards glycolytic myofibers that expressed MyHC-IIb. The expression of foetal MyHC was higher in the DP than in the WP at 1 day of age, and the decline in the foetal MyHC during the first 3 weeks was more rapid in the WP than in the DP denoting an accelerated early postnatal muscle maturation in WP than DP piglets. All foetal MyHC-positive myofibers co-expressed IIa isoform, but not vice versa. The intense myofiber hypertrophy was evident from 3 weeks until 7 months of age. In this period, the myofiber cross-sectional area increased up to 10- and 20-fold in the WP and the DP, respectively. In the DP, the hypertrophy of all myofiber types was more pronounced than in the WP, particularly the hypertrophy of IIx and IIb myofibers. To summarize, the comparison between growing DP with wild ancestors showed that genetic selection and rearing conditions lead to substantial changes in the direction and intensity of postnatal MyHC transformation as evidenced by different proportion of individual myofiber types and differences in their hypertrophic potential.  相似文献   

3.
Semitendinosus (ST) muscle samples were excised from 8 intact and 8 castrate male animals (Bos taurus) when they reached age end-points of 8, 12, 16, and 20 months. All three principal myofiber phenotypes (IC, IIA, IIB) increased in size with increasing age, with the IIA (fast-white) fibers usually larger than the other two types. Only at 16 and 20 months were the type II myofibers from intact males consistently larger than that from castrates. The amount of IIA fibers always exceeded that of the other two phenotypes at every age. Myofiber characteristics were more highly correlated with animal age than with either total body weight or total muscle mass. An ontogenetic scheme is proposed to illustrate the dynamic interrelationships of the three ST myofiber phenotypes.  相似文献   

4.
The jaw‐closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross‐sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw‐muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small‐ and large‐bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New‐ (Cebus) and Old‐World (Macaca) monkeys. Variation in hominoid jaw‐muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large‐bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller‐bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle‐M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw‐muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw‐muscle forces. Am J Phys Anthropol 151:120–134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Muscle morphology was investigated in newly hatched barramundi Lates calcarifer larvae incubated at set temperatures (26, 29 and 31° C) prior to hatching. Three days after hatching (the start of exogenous feeding), larvae from the 26 and 31° C treatments were each divided into two groups and reared at that temperature or transferred over the period of several hours to 29° C (control temperature). Incubation temperature significantly affected muscle cellularity in the developing embryo, with larvae incubated at 26° C (mean ±s .e . 223·3 ± 7·9) having on average 14·4% more inner muscle fibres than those incubated at 31° C (195·2 ± 8·8) and 4·8% more than those incubated at 29° C (213·5 ± 4·7). Conversely, inner muscle fibre cross‐sectional area significantly increased at the warm incubation temperature in L. calcarifer, so that the total cross‐sectional muscle area was not different between treatment groups. The total cross‐sectional area of superficial muscle fibres and the proportion of superficial to total fibre cross‐sectional area in just hatched L. calcarifer were also affected by incubation temperature, with incubation at the cool temperature (26° C) increasing both the total cross‐sectional area and proportion of superficial muscle fibres. By 9 days post‐hatch, the aforementioned differences were no longer significant. Similarly, there was no difference in total superficial fibre cross‐sectional area between any treatment groups of L. calcarifer, whereas incubation temperature still significantly affected the proportion of superficial to total muscle fibre cross‐sectional area. Larvae hatched and grown at 31° C had a significantly reduced percentage of superficial muscle cross‐sectional area (mean ±s .e . 5·11 ± 0·66%) compared with those incubated and grown at 29° C (8·04 ± 0·77%) and 26° C (9·32 ± 0·56%) and those incubated at 26° C and transferred to 29° C (7·52 ± 0·53%), and incubated at 31° C and transferred to 29° C (6·28 ± 0·69%). These results indicate that changes in muscle cellularity induced by raising or lowering the incubation temperature of L. calcarifer display varying degrees of persistence over developmental time. The significance of these findings to the culture of L. calcarifer is discussed.  相似文献   

6.
The identities of extracellular growth factors that regulate skeletal muscle development in vivo are largely unknown. We asked if FGFs, which act as repressors of myogenesis in culture, play a similar role in vivo by ectopically expressing in the developing limb a truncated FGF receptor 1 (dnFGFR1) that acts as a dominant negative mutant. Hind limbs and the adjacent somites of Hamburger and Hamilton (HH) stage 17 chickens were infected with a replication-competent RCAS virus encoding dnFGFR1. By ED5, the virus had spread extensively within the limb and the adjacent somites with little rostral or caudal expansion of the infection along the axial midline. Viral infection and mutant receptor expression were coincident as revealed by the distribution of a viral coat protein and an HA epitope tag present on the carboxy terminus of dnFGFR1. Within 48 h following injection of dnFGFR1, we could detect no obvious changes in skeletal muscle precursor cell migration into the hind limb as compared to control limbs infected with an empty RCAN virus. However, by 3 days following infection of RCAS-dnFGFR1 virus, the level of skeletal muscle-specific myosin heavy chain was decreased and the expression pattern altered, suggesting disruption of skeletal muscle development. Two striking muscular phenotypes were observed in dnFGFR1-expressing limbs, including an average loss of 30% in skeletal muscle wet weight and a 50% decrease in myofiber density. At all ages examined the loss of skeletal muscle mass was accompanied by a loss of myoblasts and an unexpected concomitant loss of fibroblasts. Consistent with these observations, explants of infected cells revealed a reduction in the number of myonuclei in myotubes. Although the myofiber density per unit area was decreased over 50% compared to controls there were no detectable effects on myofiber diameter. The loss in myofiber density was, however, accompanied by an increase in the space surrounding individual myofibers and a generalized loss of myofiber integrity. It is noteworthy that long-bone development was unaffected by RCAS-dnFGFR1 infection, suggesting that FGFR2 and FGFR3 signaling was not disrupted. Our data provide conclusive evidence that FGFR1 signaling is necessary to maintain myoblast number and plays a role in myofiber organization.  相似文献   

7.
Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross‐sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many‐to‐one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Objective: To compare reliability and limits of agreement of soft tissue cross‐sectional areas obtained using Slice‐O‐Matic and NIH ImageJ medical imaging software packages. Research Methods and Procedures: Abdominal and midthigh images were obtained using single‐slice computed tomography. Two trained investigators analyzed each computed tomography image in duplicate. Adipose tissue and skeletal muscle cross‐sectional areas (centimeters squared) were calculated using standard Hounsfield unit ranges (adipose tissue: ?190 to ?30 and skeletal muscle: ?29 to 150). Regions of interest included abdominal total area, total fat area, subcutaneous fat area, visceral fat area (AVF), and right and left thigh total area, fat area, and skeletal muscle area. Results: For all images, intra‐investigator coefficients of variation ranged from 0.2% to 3.4% and from 0.4% to 5.6% and inter‐investigator coefficients of variation ranged from 0.9% to 4.8% and 0.2% to 2.6% for Slice‐O‐Matic and NIH ImageJ, respectively, with intra‐ and inter‐investigator coefficients of reliability of R2 = 0.99. Mean AVF values for investigators A and B ranged from 168 to 170 cm2 using Slice‐O‐Matic and NIH ImageJ. Bland‐Altman analyses revealed that Slice‐O‐Matic and NIH ImageJ results were comparable. The mean differences (95% confidence intervals) between the AVF cross‐sectional areas obtained using the Slice‐O‐Matic and NIH ImageJ medical imaging software were +2.5 cm2 (?5.7, +10.8 cm2) or +1.4% (?3.4%, +6.4%). Discussion: These findings show that both the Slice‐O‐Matic and NIH ImageJ medical imaging software systems provide reliable measurements of adipose tissue and skeletal muscle cross‐sectional areas.  相似文献   

10.
Objective: To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross‐sectional area (CSA) and X‐ray density of two jaw closing muscles. Design: Cross‐sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. Subjects: The sample consisted of 24 subjects aged 55–68 years. Outcome measures: CSA and X‐ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. Results: There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X‐ray density between different muscles or dental states. Conclusion: The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients’ masticatory ability compared with those who were edentulous.  相似文献   

11.
Skeletal muscle is a dynamic tissue with two unique abilities; one is its excellent regenerative ability, due to the activity of skeletal muscle–resident stem cells named muscle satellite cells (MuSCs); and the other is the adaptation of myofiber size in response to external stimulation, intrinsic factors, or physical activity, which is known as plasticity. Low physical activity and some disease conditions lead to the reduction of myofiber size, called atrophy, whereas hypertrophy refers to the increase in myofiber size induced by high physical activity or anabolic hormones/drugs. MuSCs are essential for generating new myofibers during regeneration and the increase in new myonuclei during hypertrophy; however, there has been little investigation of the molecular mechanisms underlying MuSC activation, proliferation, and differentiation during hypertrophy compared to those of regeneration. One reason is that ‘degenerative damage’ to myofibers during muscle injury or upon hypertrophy (especially overloaded muscle) is believed to trigger similar activation/proliferation of MuSCs. However, evidence suggests that degenerative damage of myofibers is not necessary for MuSC activation/proliferation during hypertrophy. When considering MuSC-based therapy for atrophy, including sarcopenia, it will be indispensable to elucidate MuSC behaviors in muscles that exhibit non-degenerative damage, because degenerated myofibers are not present in the atrophied muscles. In this review, we summarize recent findings concerning the relationship between MuSCs and hypertrophy, and discuss what remains to be discovered to inform the development and application of relevant treatments for muscle atrophy.  相似文献   

12.
13.
The basement membrane of skeletal muscle fibers is believed to persist unchanged during myofiber degeneration and act as a tubular structure within which the regeneration of new myofibers occurs. In the present study we describe macromolecular changes in the basement membrane zone during muscle degeneration and regeneration, as monitored by immunofluorescence using specific antibodies against types IV and V collagen, laminin, and heparan sulfate proteoglycan and by the binding of concanavalin A (Con A). Skeletal muscle regeneration was induced by autotransplantation of the extensor digitorum longus muscle in rats. After this procedure, the myofibers degenerate; this is followed by myosatellite cell activation, proliferation, and fusion, resulting in the formation of new myotubes that mature into myofibers. In normal muscle, the distribution of types IV and V collagen, laminin, heparan sulfate proteoglycan, and Con A binding was seen in the pericellular basement membrane region. In autotransplanted muscle, the various components of the basement membrane zone disappeared, leaving behind some unidentifiable component that still bound Con A. Around the regenerated myotubes a new basement membrane (zone) reappeared, which persisted during maturation of the regenerating muscle. The distribution of various basement membrane components in the regenerated myofibers was similar to that seen in the normal muscle. Based on our present and previous study (Gulati, A.K., A.H. Reddi, and A.A. Zalewski, 1982, Anat. Rec. 204:175-183), it appears that some of the original basement membrane zone components disappear during myofiber degeneration and initial regeneration. As a new basement membrane develops, its components reappear and persist in the mature myofibers. We conclude that skeletal muscle fiber basement membrane (zone) is not a static structure as previously thought, but rather that its components change quite rapidly during myofiber degeneration and regeneration.  相似文献   

14.
The effects of long-term hindlimb unweighting by tail suspension on postnatal growth of 20-day rat extensor digitorum longus (EDL) and soleus muscles were studied. Morphological assay indicated that radial growth of soleus myofibers was completely inhibited between 3 and 10 days of suspension and reduced thereafter, leading to a severe attenuation (-76% from control) over the total experimental period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In addition, myofibers were arranged parallel to the long axis of the muscle, an orientation associated with chronologically younger muscles, suggesting morphological maturation of the soleus muscle had been delayed by suspension. In contrast, radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions and remained within approximately 5% of control at all times. Suspension also influenced the normal changes that occur in satellite cell and myonuclear populations during postnatal growth. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers after only 3 days in both soleus and EDL muscles. The reduced number of satellite cells within 3 days of initiating hindlimb suspension appeared to be the result of their incorporation into myofibers while the long-lasting reduction appeared to be the added effects of decreased proliferative activity. In the soleus, this reduction in number and proliferation of satellite cells persisted throughout the experimental period and resulted in an overall 43% fewer myonuclei and 45% fewer satellite cells than control at 50 days of age. In contrast, both the total number and mitotic activity of satellite cells in the EDL rapidly returned to weight-bearing control levels by day 10 of suspension, resulting in no overall reduction in myonuclear accretion.  相似文献   

15.
The Ras–extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice.  相似文献   

16.
Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2′-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P<0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P<0.05) BrdU labeling in uninjured soleus muscles compared to weightbearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P>0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers. Accepted: 11 December 1997  相似文献   

17.
Myofibers with an abnormal branching cytoarchitecture are commonly found in various neuromuscular diseases as well as after severe muscle injury. These aberrant myofibers are fragile and muscles containing a high percentage of these myofibers are weaker and more prone to injury. To date the mechanisms and molecules regulating myofiber branching have been obscure. Recent work analyzing the role of mouse odorant receptor 23 (MOR23) in muscle regeneration revealed that MOR23 is necessary for proper skeletal muscle regeneration in mice as loss of MOR23 leads to increased myofiber branching. Further studies demonstrated that MOR23 expression is induced when muscle cells were extensively fusing and plays an important role in controlling cell migration and adhesion. These data demonstrate a novel role for an odorant receptor in tissue repair and identify the first molecule with a functional role in myofiber branching.  相似文献   

18.
The organization and fine structure of the muscles of the scolex of the cysticercoid of Hymenolepis microstoma are described. The contractile apparatus consists of thick (175–325 Å diameter × 1.4 μm) and thin (60–80 Å diameter × 1 μm) filaments. The thick filaments are occasionally attached to the thin filaments by cross bridges. The thin filaments are attached to the dense bodies or to a dense zone at the sarcolemma at muscle insertions. In contracted muscle the thick filaments appear as quasi-hexagonal arrays or in lines. Each thick filament is surrounded by an orbit of up to 12 thin filaments, which in turn may be shared by adjacent thick filaments. Thin filaments may be present in quasi-rectangular or hexagonal groupings indicating some low order degree of actin lattice. The fusiform dense bodies (1,500 Å × 900 Å), consisting of up to 25 discrete substructures, are distributed uniformly throughout the myofiber and/or attached to the sarcolemma at attachment plaques. The sarcoplasmic reticulum, consisting of a presumed anastomosing network of tubules is structurally connected to the sarcolemma by periodic deposits of electron opaque material. Sarcoplasmic extensions of the myofiber(s) contain the nucleus, Golgi complexes, rough endoplasmic reticulum, ribosomes, β-glycogen, mitochondria and membrane bound electron dense structures. Upon activation of the metacestode, groups of α-glycogen and enlargement of the rough endoplasmic reticulum were observed. Microtubules which were conspicuously absent from the sarcoplasm of the unactivated worms appeared adjacent to the myofibers in activated worms.  相似文献   

19.
Satellite cells are situated beneath the basal lamina that surrounds each myofiber and function as myogenic precursors for muscle growth and repair. The source of satellite cell renewal is controversial and has been suggested to be a separate circulating or interstitial stem cell population. Here, we transplant single intact myofibers into radiation-ablated muscles and demonstrate that satellite cells are self-sufficient as a source of regeneration. As few as seven satellite cells associated with one transplanted myofiber can generate over 100 new myofibers containing thousands of myonuclei. Moreover, the transplanted satellite cells vigorously self-renew, expanding in number and repopulating the host muscle with new satellite cells. Following experimental injury, these cells proliferate extensively and regenerate large compact clusters of myofibers. Thus, within a normally stable tissue, the satellite cell exhibits archetypal stem cell properties and is competent to form the basal origin of adult muscle regeneration.  相似文献   

20.
Zhang C  Gao Y 《Journal of biomechanics》2012,45(11):2001-2006
Most of the myofibers in long muscles of vertebrates terminate within fascicles without reaching either end of the tendon, thus force generated in myofibers has to be transmitted laterally through the extracellular matrix (ECM) to adjacent fibers; which is defined as the lateral transmission of force in skeletal muscles. The goal of this study was to determine the mechanisms of lateral transmission of force between the myofiber and ECM. In this study, a 2D finite element model of single muscle fiber was developed to study the effects of mechanical properties of the endomysium and the tapered ends of myofiber on lateral transmission of force. Results showed that most of the force generated is transmitted near the end of the myofiber through shear to the endomysium, and the force transmitted to the end of the model increases with increased stiffness of ECM. This study also demonstrated that the tapered angle of the myofiber ends can reduce the stress concentration near the myofiber end while laterally transmitting force efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号