首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Germ cells and somatic cells have the identical genome. However, unlike the mortal fate of somatic cells, germ cells have the unique ability to differentiate into gametes that retain totipotency and produce an entire organism upon fertilization. The processes by which germ cells differentiate into gametes, and those by which gametes become embryos, involve dramatic cellular differentiation accompanied by drastic changes in gene expression, which are tightly regulated by genetic circuitries as well as epigenetic mechanisms. Epigenetic regulation refers to heritable changes in gene expression that are not due to changes in primary DNA sequence. The past decade has witnessed an ever-increasing understanding of epigenetic regulation in many different cell types/tissues during embryonic development and adult homeostasis. In this review, we focus on recent discoveries of epigenetic regulation of germ cell differentiation in various metazoan model organisms, including worms, flies, and mammals.  相似文献   

2.
生殖细胞是多细胞生物体遗传物质传递的载体,在发育生物学、临床医学及畜牧业生产等领域中具有广阔的应用前景。原始生殖细胞作为胚胎体内最早出现的生殖细胞,在发育过程中受多种信号因子的诱导,发生特化、迁移、分化及减数分裂,最终形成单倍体的配子,此过程在遗传学和表观遗传学方面受到严格的调控。另外,多能性干细胞向生殖细胞的分化以及生殖细胞的体外培养方面在最近均取得了较大的进展。该文将主要围绕原始生殖细胞,综述最近几年来关于生殖细胞形成中的转录调控及体外培养体系的进展。  相似文献   

3.
Embryonic stem cells (ESCs) have the capacity to differentiate into nearly all sorts of cell types, including germ cells, which were regarded as one type of highly specialized cells in mammals, taking the responsibility of transferring genetic materials to the next generation. Studies on induction differentiation of murine embryonic stem cells (mESCs) into male germ cells, but with a low efficiency, basic reason is that the regulation mechanism of germ cell development in mammals is still unclear. miRNA might play an important role in spermatogenesis in mammals. In this study, several miRNAs, which might be related to spermatogenesis, were initially selected and detected in the mouse tissues by semi‐polymerase chain reaction (PCR) and quantitative real time (qRT)‐PCR to find a testis‐specific miRNA. To study its effect on mESCs differentiation into male germ cells, miR‐34c mimics were synthesized and pri‐miR‐34c‐GFP plasmid was constructed, transfected into mESCs and combined with retinoic acid induction. The effects of miR‐34c were analysed by morphology, alkaline phosphatase staining, qRT‐PCR_and immunofluorescent staining. The results showed that miR‐34c promoted mESCs differentiation into male germ‐like cells, to some extent. Then miR‐34c targeted genes were predicted by bioinformatics; Retinoic acid receptor gamma (RARg) was selected, and two dual‐luciferase reporter vectors contained the normal and mutated 3′untranslated region of RARg were constructed, respectively. By miRNA mimics and vector co‐transfection experiment, the predicted target gene‐RARg was confirmed. In conclusion, we found a mammalian male germ cell specific miRNA—miR‐34c, and it might be pivotal in mESCs differentiation into male germ cells through its target—RARg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Although the avian primordial germ cells (PGCs) have been used to produce transgenic birds, their characteristics largely remain unknown. The isolation, culture, biological characterization, and directed neural differentiation of duck EG cells were assayed in this study. The Results showed that the EG cells were got by isolating embryonic gonad and surrounding tissue from 7-day-old duck embryo. The PGCs co-cultured with their gonadal somatic cells were well grown. After passaging, the EG cells were incubated in medium with cytokines and Mitomycin C on inactivated duck embryonic fibroblasts (DEFs) feeder layers. After several passages, alkaline phosphatase (ALP) and periodic acid-Schiff (PAS) resulted positive, cellular markers detection positive for SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81. Karyotype analysis showed the EG cells kept diploid condition and the hereditary feature was stable in accordance with varietal characteristics of duck. These cells grew continuously for 11 passages on DEFs. Under induction of medium with BME, RA, and IBMX, the EG cells lost undifferentiated state, large amount of neural cells appeared with the formation of neural cells networks. Special Nissl body was found by toluidine blue stain after induced for 7 days. Immunofluorescence staining results indicated that differentiated EG cells expressed Nestin, NSE, and GFAP positive. The expression of Nestin, NSE, and GFAP mRNA were positive by RT-PCR. The results revealed that RA can obviously promote the directed differentiation of duck EG cells into neural lineage. The duck EG cells will be useful for the production of transgenic birds, for cell replacement therapy and for studies of germ cell differentiation.  相似文献   

5.
The African clawed frog, Xenopus laevis, has long been a model animal for the studies in the fields of animal cloning, developmental biology, biochemistry, cell biology, and physiology. With the aid of Xenopus, major molecular mechanisms that are involved in embryonic development have been understood. Germ layer formation is the first event of embryonic cellular differentiation, which is induced by a few key maternal factors and subsequently by zygotic signals. Meanwhile, another type of signals, the pluripotency factors in ES cells, which maintain the undifferentiated state, are also present during early embryonic cells. In this review, the functions of the pluripotency factors during Xenopus germ layer formation and the regulatory relationship between the signals that promote differentiation and pluripotency factors are discussed.  相似文献   

6.
Germ plasm is found in germ‐line cells of Xenopus and thought to include the determinant of primordial germ cells (PGCs). As mitochondria is abundant in germ plasm, vital staining of mitochondria was used to analyze the movement and function of germ plasm; however, its application was limited in early cleavage embryos. We made transgenic Xenopus, harboring enhanced green fluorescent protein (EGFP) fused to the mitochondria transport signal (Dria‐line). Germ plasm with EGFP‐labeled mitochondria was clearly distinguishable from the other cytoplasm, and retained mostly during one generation of germ‐line cells in Dria‐line females. Using the Dria‐line, we show that germ plasm is reorganized from near the cell membrane to the perinuclear space at St. 9, dependent on the microtubule system.  相似文献   

7.
We have previously reported the isolation and characterization of a novel endothelial-restricted gene, Egfl7, that encodes a secreted protein of about 30-kDa. We and others demonstrated that Egfl7 is highly expressed by endothelial cells during embryonic development and becomes down-regulated in the adult vasculature. In the present paper, we show that during mouse embryonic development, Egfl7 is also expressed by primordial germ cells (PGC). Expression is down-regulated when PGCs differentiate into pro-spermatogonia and oogonia, and by 15.5 dpc Egfl7 can no longer be detected in the germ line of both sexes. Notably, Egfl7 is again transiently up-regulated in germ cells of the adult testis. In contrast, expression in the ovary remains limited to the vascular endothelium. Our results provide the first evidence of a non-endothelial expression of EGFL7 and suggest distinctive roles for Egfl7 in vascular development and germ cell differentiation.  相似文献   

8.
9.
10.
Avian pluripotent stem cells   总被引:11,自引:0,他引:11  
Pluripotent embryonic stem cells are undifferentiated cells capable of proliferation and self-renewal and have the capacity to differentiate into all somatic cell types and the germ line. They provide an in vitro model of early embryonic differentiation and are a useful means for targeted manipulation of the genome. Pluripotent stem cells in the chick have been derived from stage X blastoderms and 5.5 day gonadal primordial germ cells (PGCs). Blastoderm-derived embryonic stem cells (ESCs) have the capacity for in vitro differentiation into embryoid bodies and derivatives of the three primary germ layers. When grafted onto the chorioallantoic membrane, the ESCs formed a variety of differentiated cell types and attempted to organize into complex structures. In addition, when injected into the unincubated stage X blastoderm, the ESCs can be found in numerous somatic tissues and the germ line. The potential give rise to somatic and germ line chimeras is highly dependent upon the culture conditions and decreases with passage. Likewise, PGC-derived embryonic germ cells (EGCs) can give rise to simple embryoid bodies and can undergo some differentiation in vitro. Interestingly, chicken EG cells contribute to somatic lineages when injected into the stage X blastoderm, but only germ line chimeras have resulted from EGCs injected into the vasculature of the stage 16 embryo. To date, no lines of transgenic chickens have been generated using ESCs or EGCs. Nevertheless, progress towards the culture of avian pluripotent stem cells has been significant. In the future, the answers to fundamental questions regarding segregation of the avian germ line and the molecular basis of pluripotency should foster the full use of avian pluripotent stem cells.  相似文献   

11.
Human embryonic germ (hEG) cells derive from the transformation of primordial germ cells (PGCs) under appropriate culture conditions with embryonic fibroblast feeder cells. Although the pluripotent and proliferative capacity of hEG cells is thought to be equivalent to that of human embryonic stem (hES) cells, the difficulties of isolating and maintaining hEG cell lines in vitro have restricted their availability for experimental use. Despite this, some of the factors involved in PGC development, their transformation into embryonic germ cells and the differentiation of embryonic germ cells to specific cell phenotypes have been explored. The potential use of hEG cells in cell therapy applications will, however, depend on a more thorough understanding of how to derive and maintain these cells in vitro.  相似文献   

12.
人胚胎干细胞向生殖细胞分化的研究进展   总被引:4,自引:0,他引:4  
小鼠胚胎干细胞体外已成功诱导分化为配子细胞,人胚胎干细胞理论上也具备分化为生殖细胞的潜能。本文从影响人胚胎干细胞体外向生殖系分化的基因调控和干细胞小生境(niche)方面进行综述,并指出胚胎干细胞在生殖医学及不孕治疗中的研究方向和应用前景。  相似文献   

13.
Germ cell depletion 2 (gcd2) is a chemically induced recessive mutation that causes infertility in male and female mice. The infertility is caused by germ cell depletion as early as 11.5 days post-coitum, when primordial germ cells have completed their migration to the embryonic gonads. Thus, the gcd2 mutation affects the proliferation and/or survival of germ cells after they arrive in the embryonic gonad, a developmental time when little is known about the requirements for germ cell proliferation and survival. The sterility phenotype is incompletely penetrant, has variable expressivity, and is modulated by strain background. The penetrance ranges from 37% in strain C57BL/6J to nearly 100% in CAST/EiJ. Genetic mapping localized gcd2 to a approximately 1Mb region on Chr 2. This interval contains a small number of annotated genes, of which none are known to have a role in germ cell development. Sequencing the coding regions of these genes failed to reveal a mutation, and BACs containing two of the candidate genes failed to rescue the phenotype. This raises the possibilities that the gcd2 mutation resides in non-coding sequences, and regulates genes outside the genetically defined critical region.  相似文献   

14.
小鼠胚胎干细胞(ESC)在体外可以分化为多种细胞类型,其中包括各阶段的生殖细胞,甚至精细胞和成熟卵母细胞。ESC向生殖细胞分化的效率受到包括生长因子、激素和体细胞等多种因素的影响,在体外形成的是雌性配子还是雄性配子与ESC是XX型还是XY型没有必然联系。简要综述了小鼠生殖细胞在体内外的分化发育、性别决定和增殖等,并总结和展望了ESC向生殖细胞分化研究面临的问题和应用前景。  相似文献   

15.
16.
韩嵘  尚克刚 《遗传》2002,24(1):77-81
本文综述了近年来小鼠胚胎发育过程中生殖细胞的起源、迁移与增殖、性别分化及其基因组修饰等方面的研究进展。小鼠生殖细胞在7~7.5dpc时由原始生殖细胞(PGC)演变而来,至12.5dpc时PGC全部迁移进入生殖嵴,到13.5dpc时停止分裂。Steel/c-kit信号途径在PGC迁移过程中起重要作用。生殖细胞的性别主要是由生殖腺中体细胞的微环境决定的。Y染色体上存在精子形成所必需的基因。生殖细胞的全基因组范围的重新甲基化晚于胚胎体细胞的重新甲基化,到18.5dpc时才完成。雌性生殖细胞的X染色体重新活化在14.5~15.5dpc时完成,并且与生殖嵴的性别分化无关。 Abstract:This paper reviewed the recent progress of the origin,migration and proliferation,sex determination,and genomic modification of murine germ cells during its embryonic development. Murine germ cells originate from primordial germ cells at about 7~7.5dpc. Then PGCs migrated into germinal ridge at about 12.5dpc during which Steel/c-kit signal pathway plays important roles and stopped division at 13.5dpc. The sex of germ cells was mainly determined by the soma microenvironment in the gonad. And there are essential genes for sperm formation on the Y chromosome. The de novo methylation of murine germ cells was much later than soma cells and was completed at about 18.5dpc. The X chromosome reactivation of female germ cells was finished at about 14.5~15.5dpc which was independent of sexual differentiation of germinal ridge.  相似文献   

17.
18.
19.
胚胎生殖细胞(embryonic germ cell,EGC)是由胎儿原始生殖细胞(primordial germ cell,PGC)经体外驯化培养获得的一种多潜能干细胞。研究猪PGC生物学特性对于建立猪EGC及了解猪生殖细胞发育机制具有重要意义。该研究以原代培养的猪PGC为对象,探讨了其生长行为特征及其重编程过程中多能性、生殖系标志基因的表达模式。结果显示,26 d胚胎生殖嵴分离的PGC呈碱性磷酸酶阳性,细胞体积及核质比较大;体外培养初期呈现出较强的增殖及迁移能力,培养第5 d细胞增殖达到平台期,此时克隆高表达Oct4、Sox2、Nanog、c-Myc、Klf4和Ifi tm3(P〈0.05),低表达Blimp1(P〈0.05),Nanos1和Stella的表达水平与猪胎儿成纤维细胞无差异;猪PGC形成的原代克隆已经具有多向分化潜能。  相似文献   

20.
Historically, our understanding of molecular genetic aspects of germ cell development has been limited. Recently, results demonstrated that the derivation of pluripotent stem cells may provide the necessary genetic system to study germ cell development. Here, we characterized an induced pluripotent stem cell (iPSC) line, which can spontaneously differentiate into embryonic bodies (EBs) after 3 days of suspension culture, expressing specific markers of three germ layers. Then, we induced the iPSCs to differentiate into germ cells by culturing adherent EBs in retinoic acid (RA) and porcine follicular fluid (PFF) differentiation medium or seminiferous tubule transplantation. Our results indicated that RA and PFF were beneficial for the derivation of germ cells and oocyte‐like cells from iPSCs, and iPSCs transplantation could make a contribution to repairing the testis of infertile mice. Our study offers an approach for further study on the development and the differentiation of germ cells derived from iPSCs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号