首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Gastrokine 1 (GKN1) plays an important role in the gastric mucosal defense mechanism and also acts as a functional gastric tumor suppressor. In this study, we examined the effect of GKN1 on the expression of inflammatory mediators, including NF‐κB, COX‐2, and cytokines in GKN1‐transfected AGS cells and shGKN1‐transfected HFE‐145 cells. Lymphocyte migration and cell viability were also analyzed after treatment with GKN1 and inflammatory cytokines in AGS cells by transwell chemotaxis and an MTT assay, respectively. In GKN1‐transfected AGS cells, we observed inactivation and reduced expression of NF‐κB and COX‐2, whereas shGKN1‐transfected HFE‐145 cells showed activation and increased expression of NF‐κB and COX‐2. GKN1 expression induced production of inflammatory cytokines including IL‐8 and ‐17A, but decreased expression of IL‐6 and ‐10. We also found IL‐17A expression in 9 (13.6%) out of 166 gastric cancer tissues and its expression was closely associated with GKN1 expression. GKN1 also acted as a chemoattractant for the migration of Jurkat T cells and peripheral B lymphocytes in the transwell assay. In addition, GKN1 significantly reduced cell viability in both AGS and HFE‐145 cells. These data suggest that the GKN1 gene may inhibit progression of gastric epithelial cells to cancer cells by regulating NF‐κB signaling pathway and cytokine expression. J. Cell. Biochem. 114: 1800–1809, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Research in cell signaling often depends on tissue culture, but the artificial substrates used to grow cells in vitro are likely to distort the conclusions, particularly when adhesion-mediated signaling events are investigated. Studies of signal transduction pathways operating in cells grown in three-dimensional (3D) matrices provide a better system, giving a closer insight of the cell signaling in vivo. We compared the steady-state levels of ERK1/2 activity in primary human fibroblasts, induced by cell-derived 3D fibronectin matrix or fibronectin, coated on flat surfaces. 3D environment caused ERK1/2 stimulation concomitant with a 2.5-fold increase in Ras GTP loading and Src activation. Under these conditions FAK autophosphorylation was suppressed. Treatment with Src inhibitor PP2 abolished these effects indicating that 3D fibronectin matrix activated ERK1/2 through Src/Ras/Raf pathway, bypassing FAK. These observations suggest that within in vivo-like conditions Src may have a leading role in the induction of sustained ERK1/2 activation.  相似文献   

5.
6.
The activity of the catalytic domain of the orphan MAP kinase ERK5 is increased by Ras but not Raf-1 in cells, which suggests that ERK5 might mediate Raf-independent signaling by Ras. We found that Raf-1 does contribute to Ras activation of ERK5 but in a manner that does not correlate with Raf-1 catalytic activity. A clue to the mechanism of action of Raf-1 on ERK5 comes from the observation that endogenous Raf-1 binds to endogenous ERK5, suggesting the involvement of regulatory protein-protein interactions. This interaction is specific because Raf-1 binds only to ERK5 and not ERK2 or SAPK. Finally, we demonstrate the ERK5/MEK5 pathway is required for Raf-dependent cellular transformation and that a constitutively active form of MEK5, MEK5DD, synergizes with Raf to transform NIH 3T3 cells. These observations suggest that ERK5 plays a large role in Raf-1-mediated signal transduction.  相似文献   

7.
8.
9.
Mutations in more than 10 genes are reported to cause familial amyotrophic lateral sclerosis (ALS). Among these genes, optineurin (OPTN) is virtually the only gene that is considered to cause classical ALS by a loss‐of‐function mutation. Wild‐type optineurin (OPTNWT) suppresses nuclear factor‐kappa B (NF‐κB) activity, but the ALS‐causing mutant OPTN is unable to suppress NF‐κB activity. Therefore, we knocked down OPTN in neuronal cells and examined the resulting NF‐κB activity and phenotype. First, we confirmed the loss of the endogenous OPTN expression after siRNA treatment and found that NF‐κB activity was increased in OPTN‐knockdown cells. Next, we found that OPTN knockdown caused neuronal cell death. Then, overexpression of OPTNWT or OPTNE50K with intact NF‐κB‐suppressive activity, but not overexpression of ALS‐related OPTN mutants, suppressed the neuronal death induced by OPTN knockdown. This neuronal cell death was inhibited by withaferin A, which selectively inhibits NF‐κB activation. Lastly, involvement of the mitochondrial proapoptotic pathway was suggested for neuronal death induced by OPTN knockdown. Taken together, these results indicate that inappropriate NF‐κB activation is the pathogenic mechanism underlying OPTN mutation‐related ALS.

  相似文献   


10.
The Raf/MEK/extraceUular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ ERK-mediated growth arrest signaling.  相似文献   

11.
Downstream A3 receptor signalling plays an important role in the regulation of cell death and proliferation. Therefore, it is important to determine the molecular pathways involved through A3 receptor stimulation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. The crosstalk between these two pathways has also been investigated. The focus of this review centres on downstream mediators of A3 adenosine receptor signalling.  相似文献   

12.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

13.
Pseudolaric acid B (PAB) is a major bioactive component of the medicinal plant Pseudolarix kaempferi. Traditional medicine practitioners in Asia have been using the roots of this plant to treat inflammatory and microbial skin diseases for centuries. In the current study, in vitro immunosuppressive effect of PAB and the underlying mechanisms have been investigated. The results showed that PAB dose‐dependently suppressed human T lymphocyte proliferation, IL‐2 production and CD25 expression induced by co‐stimulation of PMA plus ionomycin or of anti‐OKT‐3 plus anti‐CD28. Mechanistic studies showed that PAB significantly inhibited nuclear translocation of NF‐κB p65 and phosphorylation and degradation of IκB‐α evoked by co‐stimulation of PMA plus ionomycin. PAB could also suppress the phosphorylation of p38 in the MAPKs pathway. Based on these evidences, we conclude that PAB suppressed T lymphocyte activation through inhibition of NF‐κB and p38 signaling pathways; this would make PAB a strong candidate for further study as an anti‐inflammatory agent. J. Cell. Biochem. 108: 87–95, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
We investigated the effects and associated mechanism of alkannin (AL) on lipopolysaccharide (LPS)‐induced acute lung injury in a mouse model. Pretreatment with AL in vivo significantly reduced the lung wet/dry weight ratio and inhibited lung myeloperoxidase activity and malondialdehyde content, while increasing superoxide dismutase activity. Hematoxylin and eosin staining demonstrated that AL attenuated lung histopathological changes. In addition, AL‐inhibited overproduction of proinflammatory cytokines in bronchoalveolar lavage fluid and lung tissues in LPS‐injured mice and LPS‐exposed A549 cells. Further analysis showed that AL‐inhibited induction of the Rho/ROCK/NF‐κB pathway via LPS‐induced inflammation in mice and A549 cells. Fasudil, a selective ROCK inhibitor, showed similar effects. Overall, the findings indicate that AL suppresses the expression of messenger RNAs and proteins associated with Rho/ROCK/NF‐κB signaling to effectively ameliorate lung injury.  相似文献   

16.
It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll‐like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low‐density lipoproteins, the oxysterol 27‐hydroxycholesterol (27‐OH) and the aldehyde 4‐hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high‐risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27‐OH and HNE were found to enhance cell release of IL‐8, IL‐1β, and TNF‐α and to upregulate matrix metalloproteinase‐9 (MMP‐9) via TLR4/NF‐κB‐dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP‐9 upregulation, thus enhancing the release of this matrix‐degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP‐9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF‐κB downstream signaling.  相似文献   

17.
This study aimed to investigate the clinical significance, potential biological function and underlying mechanism of RPS15A in gastric cancer (GC) progression. RPS15A expression was detected in 40 pairs of GC tissues and matched normal gastric mucosae (MNGM) using qRT‐PCR analysis. Immunohistochemistry assay was conducted using a tissue microarray including 186 primary GC samples to characterize the clinical significance of RPS15A. A series of in vitro and in vivo assays were performed to elucidate the biological function of RPS15A in GC development and underlying molecular mechanisms. The expression of RPS15A was significantly up‐regulated in GC samples compared to MNGM, and its expression was closely related to TNM stage, tumour size, differentiation, lymph node metastasis and poor patient survival. Ectopic expression of RPS15A markedly enhanced the proliferation and metastasis of GC cells both in vitro and in vivo. RPS15A overexpression also promoted the epithelial‐mesenchymal transition (EMT) phenotype formation of GC cells. Investigations of underlying mechanisms found that RPS15A activated the NF‐κB signalling pathway by inducing the nuclear translocation and phosphorylation of the p65 NF‐κB subunit, transactivation of NF‐κB reporter and up‐regulating target genes of this pathway. In addition, RPS15A overexpression activated, while RPS15A knockdown inhibited the Akt/IKK‐β signalling axis in GC cells. And both Akt inhibitor LY294002 and IKK inhibitor Bay117082 neutralized the p65 and p‐p65 nuclear translocation induced by RPS15A overexpression. Collectively, our findings suggest that RPS15A activates the NF‐κB pathway through Akt/IKK‐β signalling axis, and consequently promotes EMT and GC metastasis. This newly identified RPS15A/Akt/IKK‐β/NF‐κB signalling pathway may be a potential therapeutic target to prevent GC progression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号