首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urocortin (Ucn1), a member of corticotrophin‐releasing hormone (CRH) family, has been reported to be upregulated in inflammatory diseases and function as an autocrine or paracrine inflammatory mediator. Growing evidence shows that Ucn1 increases the endothelial permeability in inflammatory conditions; however, the detailed mechanisms are not clear. In the present study, we investigated the mechanisms of increased endothelial permeability by Ucn1 in human umbilical vein endothelial cells (HUVECs) exposed to lipopolysaccharide (LPS). Pretreatment of HUVECs with Ucn1 increased the endothelial cell permeability, which was augmented by LPS synergistically. Significant downregulation of VE‐cadherin expression was also observed. Moreover, Ucn1 increased phosphorylation of protein kinase D (PKD) and heat shock protein 27 (HSP27) in a time‐ and CRHR2‐dependent manner. Inhibition of PKD and HSP27 drastically attenuated Ucn1‐induced downregulation of VE‐cadherin expression. Further investigations demonstrated that Ucn1 phosphorylated β‐catenin at Ser552 to disrupt the cadherin–catenin complex and hence promote the disassociation of β‐catenin and VE‐cadherin. Disassociation of β‐catenin and VE‐cadherin resulted in decreased VE‐cadherin expression while on the contrary β‐catenin was increased, which may due to the inactivation of GSK‐3β. Increased β‐catenin translocated into the nucleus and subsequently bound to TCF/LEF site, contributing to the elevated expression of vascular endothelial growth factor (VEGF). The above effects of Ucn1 were completely reversed by CRHR2 receptor blocker, antisauvagine‐30. Taken together, our data suggest that Ucn1 increase LPS‐induced endothelial permeability by disrupting the VE‐cadherin–β‐catenin complex via activation of CRHR2 and PKD‐HSP27 signaling pathway. J. Cell. Physiol. 228: 1295–1303, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The Wnt/β‐catenin pathway has been implicated in leukemogenesis. We found β‐catenin abnormally accumulated in both human acute T cell leukemia Jurkat cells and human erythroleukemia HEL cells. β‐Catenin can be significantly down‐regulated by the Janus kinase 2 specific inhibitor AG490 in these two cells. AG490 also reduces the luciferase activity of a reporter plasmid driven by LEF/β‐catenin promoter. Similar results were observed in HEL cells infected with lentivirus containing shRNA against JAK2 gene. After treatment with 50 µM AG490 or shRNA, the mRNA expression levels of β‐catenin, APC, Axin, β‐Trcp, GSK3α, and GSK3β were up‐regulated within 12–16 h. However, only the protein levels of GSK3β and β‐Trcp were found to have increased relative to untreated cells. Knockdown experiments revealed that the AG490‐induced inhibition of β‐catenin can be attenuated by shRNA targeting β‐TrCP. Taken together; these results suggest that β‐Trcp plays a key role in the cross‐talk between JAK/STAT and Wnt/β‐catenin signaling in leukemia cells. J. Cell. Biochem. 111: 402–411, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
A key step of Wnt signaling activation is the recruitment of β‐catenin to the Wnt target‐gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for β‐catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3–Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of β‐catenin to Wnt target‐gene promoter and activates the Wnt signaling pathway by protecting the β‐catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5–FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt‐mediated tumor cell proliferation. Therefore, Wnt‐induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.  相似文献   

6.
7.
Parathyroid hormone (PTH) exerts an anabolic action on bone but the mechanisms are incompletely understood. We showed previously that PTH interacts with the canonical Wnt‐β‐catenin signaling pathway via the transforming growth factor (TGF)‐β signaling molecule, Smad3, to modulate osteoblast differentiation and apoptosis. Here, we examined which actions of Smad3 are TGF‐β‐independent in stimulating the osteoblast phenotype and PTH‐induced Wnt‐β‐catenin signaling. For this, the TGF‐β receptor type 1 [activin receptor‐like kinase (ALK5)] inhibitor (SB431542), and a Smad3 mutant in which the site normally phosphorylated by ALK5 is mutated from SSVS to AAVA, was used. PTH induced total β‐catenin and reduced phosphorylated β‐catenin levels at 1, 6, and 24 h in mouse osteoblastic MC3T3‐E1 cells. Transient transfection of Smad3AAVA inhibited the PTH induction of total β‐catenin and reduction of phosphorylated β‐catenin levels at 6 and 24 h, but not at 1 h, indicating that the early effects occur independently of TGF‐β receptor signaling. On the other hand, MC3T3‐E1 cell clones in which Smad3AAVA was stably expressed demonstrated elevated β‐catenin levels, although alkaline phosphatase (ALP) activity and mineralization were unaltered. In contrast, MC3T3‐E1 cell clones in which wild‐type Smad3 was stably expressed exhibited increased ALP activity and mineralization that were decreased by the ALK5 inhibitor, SB431542, although the β‐catenin levels induced in these cells were not modulated. In conclusion, the present study indicates that PTH induces osteoblast β‐catenin levels via Smad3 independently of, and dependently on, TGF‐β in the early and later induction phases, respectively. J. Cell. Biochem. 108: 285–294, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
VEGF and MMP protein production are both required for exercise-induced capillary growth in skeletal muscle. The underlying process by which muscle activity initiates an angiogenic response is not established, but it is known that mechanical forces such as muscle stretch are involved. We hypothesized that stretch of skeletal muscle microvascular endothelial cells induces production of MMP-2 and VEGF through a common signal pathway. Endothelial cells were grown on Bioflex plates and exposed to 10% static stretch for up to 24 h. MMP-2 protein level was measured by gelatin zymography and VEGF, MMP-2, and MT1-MMP mRNA levels were quantified by real-time quantitative PCR. ERK1/2 and JNK phosphorylation and VEGF protein levels were assessed by Western blotting. Effects of mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK) and reactive oxygen species (ROS) on stretch-induced expression of MMP-2 and VEGF were tested using pharmacological inhibitors. Stretching of endothelial cells for 24 h caused significant increases in MMP-2 protein and mRNA level, but no change in MT1-MMP mRNA. While MMP-2 protein production was enhanced by H(2)O(2) in unstretched cells, ROS inhibition during stretch did not diminish MMP-2 mRNA or protein production. Inhibition of JNK suppressed stretch-induced MMP-2 protein and mRNA, but inhibition of ERK had no effect. In contrast, inhibition of ERK but not JNK attenuated the stretch-induced increase in VEGF mRNA. Our results demonstrate that differential regulation of MMP-2 and VEGF by MAPK signal pathways contribute to stretch-induced activation of microvascular endothelial cells.  相似文献   

9.
Upregulated gene 11 (URG11), a new gene upregulated by Heptatitis B Virus X protein (HBx), was previously shown to activate β‐catenin and promote hepatocellular growth and tumourigenesis. Although the oncogenic role of URG11 in the development of hepatocellular carcinoma has been well documented, its relevance to other human malignancies and the underlying molecular mechanisms remain largely unknown. Here we reported a novel function of URG11 to promote gastric cancer growth and metastasis. URG11 was found to be highly expressed in gastric cancer tissues compared with adjacent nontumourous ones by immunohistochemical staining and western blot. Knockdown of URG11 expression by small interfering RNA (siRNA) effectively attenuated the proliferation, anchorage‐independent growth, invasiveness and metastatic potential of gastric cancer cells. URG11 inhibition led to decreased expression of β‐catenin and its nuclear accumulation in gastric cancer cells and extensive costaining between URG11 and β‐catenin was observed in gastric cancer tissues. Transient transfection assays with the β‐catenin promoter showed that it was inhibited by URG11‐specific small inhibitory RNA. Moreover, suppression of endogenous URG11 expression results in decreased activation of β‐catenin/TCF and its downstream effector genes, cyclinD1 and membrane type 1 matrix metallopeptidase (MT1‐MMP), which are known to be involved in cell proliferation and invasion, respectively. Taken together, our data suggest that URG11 contributes to gastric cancer growth and metastasis at least partially through activation of β‐catenin signalling pathway. These findings also propose a promising target for gene therapy in gastric cancer.  相似文献   

10.
11.

Objective

β‐catenin is one of the most critical oncogenes associated with many kinds of human cancers, especially in the human CRC. Innate immunity recognizes tumour derived damage‐associated molecular patterns (DAMPs) and primes the anti‐tumour adaptive responses. While the function of β‐catenin in CRC tumourigenesis is well established, its impact on innate immune evasion is largely unknown. The aim of this study is to characterize the role of β‐catenin in inhibiting RIG‐I‐like receptor (RLR)‐mediated IFN‐β signalling in colorectal cancer.

Materials and Methods

Immunohistochemical staining and western blotting were conducted to study the expression of β‐catenin, IRF3 and phospho‐IRF3 (p‐IRF3) in CRC samples and cell lines. Plaque assay determining virus replication was performed to assess the regulation of β‐catenin on IFN‐β signalling. The inhibition of β‐catenin on RLR‐mediated IFN‐β signalling was further studied by real‐time analyses and reporter assays in the context of lentiviral‐mediated β‐catenin stably knocking down. Lastly, co‐immunoprecipitation and nuclear fractionation assay were conducted to monitor the interaction between β‐catenin and IRF3.

Results

We found that high expression of β‐catenin positively correlated with the expression of IRF3 in CRC cells. Overexpression of β‐catenin increased the viral replication. Conversely knocking down of β‐catenin inhibited viral replication. Furthermore, our data demonstrated that β‐catenin could inhibit the expression of IFN‐β and interferon‐stimulated gene 56 (ISG56). Mechanistically, we found that β‐catenin interacted with IRF3 and blocked its nuclear translocation.

Conclusion

Our study reveals an unprecedented role of β‐catenin in enabling innate immune evasion in CRC.
  相似文献   

12.
Emerging evidence has shown that GSK3β plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3β interaction protein (GSKIP) able to negatively regulate GSK3β in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH‐SY5Y cells treated with retinoic acid (RA) to differentiate to neuron‐like cells was used as a model. Overexpression of GSKIP prevents neurite outgrowth in SH‐SY5Y cells. GSKIP may affect GSK3β activity on neurite outgrowth by inhibiting the specific phosphorylation of tau (ser396). GSKIP also increases β‐catenin in the nucleus and raises the level of cyclin D1 to promote cell‐cycle progression in SH‐SY5Y cells. Additionally, overexpression of GSKIP downregulates N‐cadherin expression, resulting in decreased recruitment of β‐catenin. Moreover, depletion of β‐catenin by small interfering RNA, neurite outgrowth is blocked in SH‐SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3β/β‐catenin, β‐catenin/cyclin D1, and β‐catenin/N‐cadherin pool during RA signaling in SH‐SY5Y cells. J. Cell. Biochem. 108: 1325–1336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Transgenic mice over‐expressing calcitonin gene‐related peptide (CGRP) in osteoblasts have increased bone density due to increased bone formation, thus suggesting that CGRP plays a role in bone metabolism. In this study we determined the relationship between CGRP, the canonical Wnt signaling and apoptosis in human osteoblasts (hOBs) in consideration of the well‐documented involvement of this pathway in bone cells. Primary cultures of hOBs were treated with CGRP 10?8 M. Levels of β‐catenin, which is the cytoplasmic protein mediator of canonical Wnt signaling, and mRNA were determined. CGRP increases both the expression and the levels of cytoplasmic β‐catenin by binding to its receptor, as this effect is blocked by the antagonist CGRP8–37. This facilitatory action on β‐catenin appears to be mediated by the inhibition of the enzyme GSK‐3β via protein kinase A (PKA) activation. GSK‐3β is a glycogen synthase kinase that, by phosphorylating β‐catenin, promotes its degradation by the proteosomal machinery. Moreover, the peptide is able to inhibit hOBs apoptosis stimulated by dexamethasone or by serum deprivation, possibly through the accumulation of β‐catenin, since the inhibitor of PKA activity H89 partially prevents the antiapoptotic effect of the peptide. In conclusion CGRP, released by nerve fibers, exerts its anabolic action on bone cells by stimulating canonical Wnt signaling and by inhibiting hOBs apoptosis, thus favoring local bone regeneration. J. Cell. Physiol. 225: 701–708, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
The natural agent rhein is an ananthraquinone derivative of rhubarb, which has anticancer effects. To determine the mechanisms underlying the anticancer effects of rhein, we detected the effect of rhein on several oncoproteins. Here, we show that rhein induces β‐catenin degradation in both hepatoma cell HepG2 and cervical cancer cell Hela. Treatment of HepG2 and Hela cells with rhein shortens the half‐life of β‐catenin. The proteasome inhibitor MG132 blunts the downregulation of β‐catenin by rhein. The induction of β‐catenin degradation by rhein is dependent on GSK3 but independent of Akt. Treatment of HepG2 and Hela cells with GSK3 inhibitor or GSK3β knockdown abrogates the effect of rhein on β‐catenin. GSK3β knockdown compromises the inhibition of HepG2 and Hela cell growth by rhein. Furthermore, rhein dose not downregulate β‐catenin mutant that is deficient of phosphorylation at multiple residues including Ser33, Ser37, Thr41 and Ser45. Moreover, rhein induces cell cycle arrest at S phase in both HepG2 and Hela cells. Intraperitoneal administration of rhein suppresses tumour cells proliferation and tumour growth in HepG2 xenografts model. Finally, the levels of β‐catenin are reduced in rhein‐treated tumours. These data demonstrate that rhein can induce β‐catenin degradation and inhibit tumour growth.  相似文献   

17.
18.
We evaluated the neuroprotective effects of β‐methylphenylalanine in an experimental model of rotenone‐induced Parkinson's disease (PD) in SH‐SY5Y cells and rats. Cells were pre‐treated with rotenone (2.5 µg/mL) for 24 hours followed by β‐methylphenylalanine (1, 10 and 100 mg/L) for 72 hours. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), mitochondrial fragmentation, apoptosis, and mRNA and protein levels of tyrosine hydroxylase were determined. In a rat model of PD, dopamine (DA) and 3,4‐dihydroxyphenylacetic acid (DOPAC) levels, bradykinesia and tyrosine hydroxylase expression were determined. In rotenone–pre‐treated cells, β‐methylphenylalanine significantly increased cell viability and MMP, whereas ROS levels, apoptosis and fragmented mitochondria were reduced. β‐Methylphenylalanine significantly increased the mRNA and protein levels of tyrosine hydroxylase in SH‐SY5Y cells. In the rotenone‐induced rat model of PD, oral administration of β‐methylphenylalanine recovered DA and DOPAC levels and bradykinesia. β‐Methylphenylalanine significantly increased the protein expression of tyrosine hydroxylase in the striatum and substantia nigra of rats. In addition, in silico molecular docking confirmed binding between tyrosine hydroxylase and β‐methylphenylalanine. Our experimental results show neuroprotective effects of β‐methylphenylalanine via the recovery of mitochondrial damage and protection against the depletion of tyrosine hydroxylase. We propose that β‐methylphenylalanine may be useful in the treatment of PD.  相似文献   

19.
20.
Glycosylation is one of the most important post‐translational modifications. It is clear that the single step of β‐1,4‐galactosylation is performed by a family of β‐1,4‐galactosyltransferases (β‐1,4‐GalTs), and that each member of this family may play a distinct role in different tissues and cells. In the present study, real‐time PCR revealed that the β‐1,4‐GalT I mRNA reached peaks at 2 weeks after sciatic nerve crush and 3 days after sciatic nerve transection. Combined in situ hybridization for β‐1,4‐GalT I mRNA and immunohistochemistry for S100 showed that β‐1,4‐GalT I mRNAs were mainly located in Schwann cells after sciatic nerve injury. In conclusion, β‐1,4‐GalT I might play important roles in Schwann cells during the regeneration and degeneration of the injured sciatic nerve. In other pathology, such as inflammation, we found that LPS administration affected β‐1,4‐GalT I mRNA expression in sciatic nerve in a time‐ and dose‐dependent manner, and β‐1,4‐GalT I mRNA is expressed mainly in Schwann cells. These results indicated that β‐1,4‐GalT I plays an important role in the inflammation reaction induced by intraperitoneal injection of LPS. Similarly, we found that β‐1,4‐GalT I in Schwann cells in vitro was affected in a time‐ and concentration‐dependent manner in response to LPS stimulation. All these results suggest that β‐1,4‐GalT I play an important role in Schwann cells in vivo and vitro during pathology. In addition, β‐1,4‐GalT I production was drastically suppressed by U0126 (ERK inhibitor), SB203580 (p38 inhibitor), or SP600125 (SAPK/JNK inhibitor), which indicated that Schwann cells which regulated β‐1,4‐GalT I expression after LPS stimulation were via ERK, SAPK/JNK, and P38 MAP kinase signal pathways. J. Cell. Biochem. 108: 75–86, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号