首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To achieve our aim of understanding the interactions between direct current and enzymes in solution, we exposed reconstituted Crotalus atrox venom to direct electric current by immersing two platinum thread electrodes connected to a voltage generator (between 0 and 8 V) into a reaction mixture for a few seconds. Then, we assayed the residual activity of phospholipases A(2) (PLA(2)),metalloproteinases, and phosphodiesterases, abundant in crotaline snake venoms and relevant in the pathophysiology of envenomation, characterized by hemorrhage, pain, and tissue damage. C. atrox venom phospholipase A(2) and metalloproteinases were consistently and irreversibly inactivated by direct current (between 0 and 0.7 mA) exposure. In contrast, C. atrox venom phosphodiesterases were not affected. Total protein content and temperature of the sample remained the same. Secretory pancreatic phospholipase A(2), homologue to snake venom phospholipases A(2), was also inactivated by direct current treatment. In order to understand the structural reasoning behind PLA(2) inactivation, circular dichroism measurements were conducted on homogeneous commercial pancreatic phospholipase A(2), and it was found that the enzyme undergoes structural alterations upon direct current exposure.  相似文献   

2.
Arachidonic acid (AA) and its metabolic products are important second messengers which exert many biological actions, including modulation of various ion channels. However, the blockage of muscle Na+ channel isoforms by AA has not been examined in detail. Here, we investigated the modulating effects of AA on muscle rNaV1.4 isoforms expressed in human embryonic kidney 293 cells. The results revealed that AA has both activation and inhibitory effects on rNaV1.4 currents depending on the depolarizing potential: AA increased the rNaV1.4 current evoked by a depolarization of ?30 or ?40 mV, but significantly decreased the rNaV1.4 current evoked by a depolarization of membrane potential over ?10 mV. At concentrations of 1–500 µM, the inhibitory effect on the rNaV1.4 current induced by AA was dose‐dependent and reversible. In addition to modulating the amplitude of the rNaV1.4 current, AA significantly modulated the steady‐state activation and inactivation properties of rNaV1.4 channels. Furthermore, treatment with AA resulted in a fairly slow recovery of the rNaV1.4 channel from inactivation; however, the inhibitory effect of AA was not changed by repetitive pulses or by changing frequency. The effect of AA on rNaV1.4 currents was completely mimicked by ETYA, the non‐metabolized analog of AA. Our data demonstrated that AA, but not the metabolic products of AA, can voltage‐dependent modulate rNaV1.4 currents. J. Cell. Physiol. 219: 173–182, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Some enzymes are inactivated by their natural substrates during catalytic turnover, limiting the ultimate extent of reaction. These enzymes can be separated into three broad classes, depending on the mechanism of the inactivation process. The first type is enzymes which use molecular oxygen as a substrate. The second type is inactivated by hydrogen peroxide, which is present either as a substrate or a product, and are stabilized by high catalase activity. The oxidation of both types of enzymes shares common features with oxidation of other enzymes and proteins. The third type of enzyme is inactivated by non-oxidative processes, mainly reversible loss of cofactors or attached groups. Sub classes are defined within each broad classification based on kinetics and stoichiometry. Reaction-inactivation is in part a regulatory mechanism in vivo, because specific proteolytic systems give rapid turnover of such labelled enzymes. The methods for enhancing the stability of these enzymes under reaction conditions depends on the enzyme type. The kinetics of these inactivation reactions can be used to optimize bioreactor design and operation.  相似文献   

4.
Aims: Multidrug‐resistant opportunistic pathogens are clinically significant and require the development of new antimicrobial methods. In this study, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus cells were exposed to atmospheric plasma on agar plates and in vitro on porcine skin for the purpose of testing bacterial inactivation. Methods and Results: Microbial inactivation at varying exposure durations was tested using a nonthermal plasma jet generated with a DC voltage from ambient air. The observed reduction in colony forming units was quantified as log10 reductions. Conclusions: Direct plasma exposure significantly inactivated seeded bacterial cells by approx. 6 log10 on agar plates and 2–3 log10 on porcine skin. On agar plates, an indirect ‘bystander’ inactivation outside the plasma delivery area was also observed. The reduced inactivation observed on the skin surface was most likely due to cell protection by the variable surface architecture. Significance and Impact of Study: Atmospheric plasma has potential for clinical application as a disinfectant of patient skin and medically relevant surfaces.  相似文献   

5.
Some reactions of organic synthesis require to be performed in rather aggressive media, like organic solvents, that frequently impair enzyme operational stability to a considerable extent. We have studied the option of developing a reactivation strategy to increase biocatalyst lifespan under such conditions, under the hypothesis that organic solvent enzyme inactivation is a reversible process. Glyoxyl agarose immobilized penicillin G acylase and cross‐linked enzyme aggregates of the enzyme were considered as biocatalysts performing in dioxane medium. Reactivation strategy consisted in re‐incubation in aqueous medium of the partly inactivated biocatalysts in organic medium, best conditions of reactivation being studied with respect to dioxane concentration and level of enzyme inactivation attained prior to reactivation. Best results were obtained with glyoxyl agarose immobilized penicillin G acylase at all levels of residual activity studied, with reactivations up to 50%; for the case of a biocatalyst inactivated down to 75% of its initial activity, full recovery of enzyme activity was obtained after reactivation. The potential of this strategy was evaluated in the thermodynamically controlled synthesis of deacetoxycephalosporin G in a sequential batch reactor operation, where a 20% increase in the cumulative productivity was obtained by including an intermediate stage of reactivation after 50% inactivation. Biotechnol. Bioeng. 2009;103: 472–479. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
This article focuses on the role of interfaces on lysozyme inactivation and aggregation process in stirred reactor. The first order inactivation constant of this process has found to be proportional not only to the power imparted by the impeller but also to the area of glass-liquid, air-liquid and PTFE-liquid interfaces in three reactors. Both area and type of interfaces act on inactivation: PTFE and air are four more efficient than glass to promote lysozyme inactivation because of their hydrophobicity. As well as physical interfaces, molecular surfaces of inactivated enzymes -more hydrophobic than native enzymes- enhance lysozyme inactivation and aggregation. This enhancement has been found to be correlated with the properties of aggregates of inactivated enzymes, especially their number. Then, under mechanical stirring, inactivation-aggregation process is induced by physical interfaces and self-catalyzed by increasing hydrophobic surfaces of inactivated enzymes.  相似文献   

7.
The hemotoxic venoms of Viperidae and Crotalidae are responsible for most of the evenomations in the United States, West Africa, India, South-East Asia, New Guinea, and Latin America. We previously reported that a short exposure of Crotalus atrox venom to direct electric current (dc) from a low-voltage generator, in solution, causes consistent and irreversible inactivation of venom phospholipase A(2) and metalloproteases. Here we report by in vivo assay on chicken embryos at stage 18 of development according to Hamburger and Hamilton that the hemorrhagic activity of C. atrox venom is lost after exposure to dc (from low voltage). Venom was exposed to dc ranging between 0 and 1 mA. dc values above 0.7 mA abolished hemorrhage. Such in vivo data, showing that dc neutralizes C. atrox venom hemorrhagic activity suggest that a deeper knowledge is needed to understand the relationship among dc and biological matter.  相似文献   

8.
The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.  相似文献   

9.
Mechanisms of enzyme inactivation and aggregation are still poorly understood. In this work, we are considering the characterisation of both inactivation and aggregation in stirred tank reactor, with lysozyme as the model enzyme.

The inactivation kinetics are first order. For stirring speeds in the range of 0–700 rpm, the kinetic constant is found to be proportional to the power brought by the impeller. It suggests that inactivation depends on collisions between enzyme molecules. Efficient collisions between native and inactive molecules induce native molecules to turn into inactive molecules and lead to lysozyme aggregation.

During inactivation, enzymes are found to aggregate as shown by light scattering measurements. The structure of aggregates was studied on samples treated for chemical denaturation and reduction. The aggregates are supramolecular edifices, mainly made up of inactivated enzymes linked by weak forces. But aggregates are also made up of dimers and trimers of lysozyme, linked by disulfide bridges. Dimers and trimers are 18% and 5%, respectively, of the total amount of lysozyme aggregates.

Whatever the stage of aggregate formation and the initial enzyme concentration are, these aggregates are irreversibly inactivated. Enzyme activity is definitely lost even if stirring is stopped and/or temperature decreased.

This study points out the importance of hydrodynamics in bioreactors and highlights the nature of the aggregates resulting from the interactions between native and inactive enzymes.  相似文献   


10.
Angiotensin‐converting enzyme (ACE) is a key molecule of the renin–angiotensin–aldosterone system which is responsible for the control of blood pressure. For over 30 years it has become the target for fighting off hypertension. Many inhibitors of the enzyme have been synthesized and used widely in medicine despite the lack of ACE structure. The last 5 years the crystal structure of ACE separate domains has been revealed, but in order to understand how the enzyme works it is necessary to study its structure in solution. We present here the cloning, overexpression in Escherichia coli, purification and structural study of the Ala959 to Ser1066 region (ACE_C) that corresponds to the C‐catalytic domain of human somatic angiotensin‐I‐converting enzyme. ACE_C was purified under denatured conditions and the yield was 6 mg/l of culture. Circular dichroism (CD) spectroscopy indicated that 1,1,1‐trifluoroethanol (TFE) is necessary for the correct folding of the protein fragment. The described procedure can be used for the production of an isotopically labelled ACE959–1066 protein fragment in order to study its structure in solution by NMR spectroscopy. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
We have discovered a new type of affinity labeling reagents for the nucleotide-binding site of protein by introducing an active site-directing moiety to pyridoxal 5-phosphate. Uridine diphosphopyridoxal almost completely inactivated glycogen synthase in a time-dependent manner (K inact =25 µM;k 0=0.22 min–1). The inactivation was pronouncedly protected by UDP-Glc and UDP, but not by the allosteric activator Glc-6-P. The addition of cysteamine to the inactivated enzyme restored the original activity, whereas the treatment of the inactivated enzyme with NaBH4 resulted in the fixation of the label to the enzyme protein. A peptide containing the label was isolated after proteolysis, and sequenced as E-V-A-K*-V-G-G-I-(Y). Adenosine polyphosphopyridoxal considerably inactivated lactate dehydrogenase in a time-dependent manner. The degree of inactivation was dependent on the number of phosphate groups; 64% (N=2), 51% (N=3), and 35% (N=4) at a reagent concentration of 1 mM for 30 min. The inactivation was protected by NADH, but not by pyruvate. Although the inactivation was not completed, the reagent was stoichiometrically incorporated into enzyme protein concomitantly with the inactivation. Affinity chromatographic analysis of the inactivated enzyme of Blue-Toyopearl revealed the presence of several protein species. The ratio of those species changed according to the stage of inactivation.  相似文献   

12.
Several aminoacyl-tRNA synthetases from the yellow lupin (Lupinus luteus) were stabilized against inactivation during storage at 0–4°, by entrapment in Sephadex or Biogel matrices and drying over P2O5. The degree of stabilization depended on the rate of drying of the gel and the pH of the medium and to a lesser extent on the ionic strength and protein concentration. With the exception of prolyl-tRNA synthetase, a greater stability was achieved with those enzymes which were relatively stable to thermal denaturation. Aminoacyl-tRNA synthetases for glutamic acid, glutamine, methionine and arginine, which become inactivated during purification, were considerably stabilized by this procedure.  相似文献   

13.
In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage‐gated sodium current (INa) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non‐inactivating “leak” current (Ileak), which was attributed to the formation of nanoelectropores or larger pores in the plasma membrane. We demonstrate that the increase in Ileak, in combination with a residual series resistance, leads to an error in the holding potential in the patch clamp experiments and an unanticipated inactivation of the sodium channels. We conclude that the observed inhibition of INa may be largely, if not fully, artifactual. Bioelectromagnetics 34:162–164, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   

15.
Insecticidal effects of 4‐hexylresorcinol, a phenoloxidase (PO) inhibitor, were determined on Hyphantria cunea (Drury) under laboratory conditions. The LC50 for the 15‐d‐old larvae was estimated to be 2.95 g/L after 96 h exposure. The activities of glutathione S‐transferase (GST) and PO showed a decrease in larvae treated with 4‐hexylresorcinol, and the IC50 of GST and PO were estimated to be 0.8 and 0.43 g/L, respectively, 24 h after treatment. The PO from the hemolymph of fall webworm was purified by ammonium sulfate precipitation, gel‐filtration, and ion‐exchange chromatography, and then enzymatic characteristics and the mechanism of inhibition were determined using L‐dihydroxyphenylalanine (L‐DOPA) as the substrate. The purified PO showed a single band on SDS‐PAGE with a molecular weight of about 70 kDa. The optimum pH for PO activity was observed at pH 7.0, optimum temperature was found to be 45 °C, and PO activity was strongly inhibited by Zn2+. IC50 values were estimated to be 8.2, 19.14, and 24.04 μmol/L for 4‐hexylresorsinol, kojic acid, and quercetin, respectively. The inhibitory potencies (i.e., I50 of each compound/I50 of 4‐hexylresorcinol) of kojic acid and quercetin on H. cunea PO were estimated to be 1.87 and 2.89, respectively. 4‐hexylresorcinol was determined to be a competitive inhibitor, and kojic acid and quercetin were determined to be mixed inhibitors. PO is one of the most important enzymes in an insect's immune system, and the use of PO inhibitors seems to be a promising approach for pest control due to their potential safety for humans.  相似文献   

16.
A hemoprotein‐based supramolecular polymer that has a covalently linked heme moiety on the protein surface has been constructed based on interprotein heme–heme pocket interactions of the chemically modified apocytochrome b562 ( 1 ‐H63C). The thermodynamic properties of the polymer have been investigated by means of size exclusion chromatography, UV–vis spectroscopy, and circular dichroism spectroscopy. The results indicate that, as with other synthetic systems reported so far, the 1 ‐H63C hemoprotein assembly is thermodynamically controlled in aqueous solution: the degree of polymerization is dependent on the 1 ‐H63C concentration and is modulated by the addition of the end‐capping units, native heme, and/or apocytochrome b562 mutant (apoH63C). These properties suggest a potential use for the hemoprotein self‐assembly in preparation of stimuli‐responsive functional nanobiomaterials. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 194–200, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
本文比较了竹红菌甲素对人红细胞膜AchE,GPDH,Na~ -K~ ATPase和Ca~(2 )-Mg~(2 )ATPase的光敏失活能力,结果表明甲素对Ca~(2 )-Mg~(2 )ATPase作用最强,Na~ -K~ ATPase次之,GPDH再次之,AchE最不敏感,甲素还引起膜蛋白巯基氧化,膜脂质过氧化。其中,巯基氧化可能是ATPase光敏失活的主要原因,而脂质过氧化对ATPase活力损伤作用不大。游离GPDH不如与膜结合的GPDH敏感。GSH,NAD分别对ATPase,GPDH有保护作用。膜蛋白的电泳及内源荧光证据表明:在GPDH活力受到严重损伤时,酶结构并未发生剧烈改变。  相似文献   

18.
Exposure to estrogens is suggested to be a risk factor in human breast cancer development. The mechanisms underlying estrogen‐induced cancer have not been fully elucidated. Both estrogen receptor (ER)‐mediated proliferative processes and ER‐independent generation of oxidative stress are suggested to play important roles in estrogen‐induced breast carcinogenesis. In the current study, we investigated the role of oxidative stress in breast carcinogenesis using the ACI rat model of mammary tumorigenesis. Female ACI rats were treated with 17β‐estradiol (E2), butylated hydroxyanisole (BHA), or a combination of E2 + BHA for up to 240 days. Cotreatment of rats with E2 + BHA reduced estrogen‐induced breast tumor development with tumor incidence of 24%, a significant decrease relative to E2 where tumor incidence was 82%. Proliferative changes in the breast tissue of E2 + BHA‐treated animals were similar to those observed in E2‐treated animals. Tissue levels of 8‐isoprostane, a marker of oxidant stress, as well as the activities of antioxidant enzymes including glutathione peroxidase, superoxide dismutase, and catalase were quantified in the breast tissues of rats treated with E2 + BHA and compared to activity levels found in E2‐treated animals and respective age‐matched controls. Cotreatment with BHA inhibited E2‐mediated increases in 8‐isoprostane levels as well as activities of antioxidant enzymes. In summary, these data suggest that estrogen‐mediated oxidant stress plays a critical role in the development of estrogen‐dependent breast cancers and BHA inhibits E2‐dependent breast carcinogenesis by decreasing oxidant stress. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:202–211, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20281  相似文献   

19.
The effects of mm‐waves 60.22–62.22 GHz and 75 GHz on A‐type K+ currents and the effects of 61.22 GHz on Ca2+ currents of Lymnaea neurons were investigated using a whole‐cell voltage‐clamp technique. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates at the waveguide outlet, inserted into physiological solution, were in the range of 0–2400 W/kg. Millimeter wave irradiation increased the peak amplitudes, activation rates, and inactivation rates of both ion currents. The changes in A‐type K+ current were not dependent on the irradiation frequency. It was shown that the changes in the amplitudes and kinetics of both currents resulted from the temperature rise produced by irradiation. No additional effects of irradiation on A‐type K+ current other than thermal were found when tested at the phase transition temperature or in the presence of ethanol. Ethanol reduced the thermal effect of irradiation. Millimeter waves had no effect on the steady‐state activation and inactivation curves, suggesting that the membrane surface charge and binding of calcium ions to the membrane in the area of channel locations did not change. Bioelectromagnetics 20:24–33, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
This investigation studied the current densities in the neck and total contact currents in occupational exposure at 400 kV substations and power lines. Eight voluntary workers simulated their normal work tasks using the helmet–mask measuring system. In all, 151 work tasks with induced current measurements were made. Work situations were: tasks in 400 kV substations, tasks in 400–110 kV towers and the cutting of vegetation under 400 kV power lines. The average current density in the neck was estimated from the current induced in the helmet. The calculated maximum average current densities in the neck varied from 1.5 to 6.4 mA/m2 and the maximum total contact currents from 66.8 to 458.4 µA. The study shows that the maximum average current densities and the total contact currents (caused by electric field) in occupational exposure at 400 kV substations and power lines does not exceed the limit and action values (10 mA/m2 and 1 mA) of the new EU‐directive 2004/40/EC (live‐line bare‐hand works excluded). Bioelectromagnetics 30:231–240, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号