首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protein fraction purified from bovine brain myelin, previously called arretin because of its ability to inhibit neurite outgrowth, has been identified as consisting predominantly of oligodendrocyte-myelin glycoprotein (OMgp). We show that it is a potent inhibitor of neurite outgrowth from rat cerebellar granule and hippocampal cells; from dorsal root ganglion explants in which growth cone collapse was observed; from rat retinal ganglion neurons; and from NG108 and PC12 cells. OMgp purified by a different procedure from both mouse and human myelin behaves identically in all bioassays tested.  相似文献   

2.
OMgp(oligodendrocyte-myelin glycoprotein)可以通过与MAG、nogo-66等神经再生抑制因子竞争结合同一受体NgR而诱使生长锥溃变和抑制神经突起的生长。以前的研究表明,在OMgp与NgR结合抑制神经突起生长的过程中,OMgp的亮氨酸富含重复序列(LRR)是必需的。为进一步了解OMgp LRR在神经突起生长中的作用及其结构与功能之间的关系,采用PCR-定点突变法对OMgp LRR结构域分段删除,表达了删除不同基因片段后的OMgp LRR蛋白,通过对表达有NgR的CHO细胞(NgR-CHO)的黏附实验和对原代培养神经细胞的抑制实验对其功能进行了研究。结果显示,分别删除了OMgp 25~56、57~133、134~180位氨基酸的OMgp LRR蛋白仍具有结合NgR-CHO和抑制原代培养的神经元突起生长的作用;而删除了第181~228位氨基酸的OMgp LRR蛋白则失去了对原代培养神经元的生长抑制作用,但仍然具有结合NgR的能力。表明OMgp181~228在OMgp的功能中具有重要的意义。删除了第181~228位氨基酸的OMgp LRR蛋白可望作为OMgp的竞争性抑制剂,用于中枢神经系统损伤后神经再生的治疗。  相似文献   

3.
Ephrins and Eph receptor tyrosine kinases are cell‐surface molecules that serve a multitude of functions in cell–cell communication in development, physiology, and disease. EphA4 is a promiscuous member of the EphA subclass of Eph receptors and can bind to both EphrinAs and EphrinBs. In addition to its well‐established roles in guiding the development of neuronal connectivity, EphA4 has been implicated for a role in synaptic plasticity, vascular formation, axon regeneration, and central nervous system repair following injury. However, the study of its role in the adult stage has been hampered by confounding developmental defects in EphA4 germline mutants. Here, we report the generation and molecular characterization of an EphA4 conditional allele along with a novel null allele with a knockin fluorescent reporter gene (mCFP). The conditional allele will be useful in ascertaining postdevelopmental and/or cell type‐specific function of EphA4 in physiology, injury, and disease. genesis 48:101–105, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
OMgp不同结构域在抑制神经突起生长中的作用   总被引:3,自引:0,他引:3  
OMgp(oligodendrocyte-myelin glycoprotein)是一种在中枢神经系统表达的GPI连接的糖蛋白。最新发现,它具有诱使生长锥溃变和抑制神经突起再生的作用,这一作用是通过与nogo-66等神经再生抑制因子竞争结合同一受体NgR而实现的。但其相互作用的确切部位尚不能肯定。利用GST融合蛋白表达系统,分段表达了含有不同OMgp结构域的片段,对其与NgR作用的结构域进行了研究。结果表明,在OMgp与NgR的黏附结合过程中,OMgp的亮氨酸富含重复序列结构域是必需的,只有含该结构域的OMgp蛋白片段才能黏附表达有NgR的CHO细胞,并抑制神经突起的生长;在体外,含有丝/苏氨酸富含重复序列结构域的OMgp蛋白片段虽然具有微弱的沉降NgR的功能,但并不能抑制神经突起的生长。该结果将有助于中枢神经系统损伤后神经再生的理论与治疗研究。  相似文献   

5.
Magoh encodes a core component of the exon junction complex (EJC), which binds mRNA and regulates mRNA metabolism. Magoh is highly expressed in proliferative tissues during development. EJC components have been implicated in several developmental disorders including TAR syndrome, Richieri–Costa–Pereira syndrome, and intellectual disability. Existing germline null Magoh mice are embryonic lethal as homozygotes and perinatal lethal as heterozygotes, precluding detailed analysis of embryonic and postnatal functions. Here, we report the generation of a new genetic tool to dissect temporal and tissue‐specific roles for Magoh in development and adult homeostasis. This Magoh conditional allele has two loxP sites flanking the second exon. Ubiquitous Cre‐mediated deletion of the floxed allele in a heterozygous mouse (Magohdel/+) causes 50% reduction of both Magoh mRNA and protein. Magohdel/+ mice exhibit both microcephaly and hypopigmentation, thus phenocopying germline haploinsufficient Magoh mice. Using Emx1‐Cre, we further show that conditional Magoh deletion in neural progenitors during embryonic development also causes microcephaly. We anticipate this novel conditional allele will be a valuable tool for assessing tissue‐specific roles for Magoh in mammalian development and postnatal processes. genesis 52:752–758, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
《Developmental cell》2023,58(8):660-676.e7
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

7.
CNS myelin inhibits axon growth due to the expression of several growth-inhibitory proteins, including myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein and Nogo. Myelin-associated inhibitory proteins activate rho GTPase in responsive neurons. Rho kinase (ROCK) has been implicated as a critical rho effector in this pathway due to the ability of the pharmacological inhibitor Y-27632 to circumvent myelin-dependent inhibition. Y-27632, however, inhibits the activity of additional kinases. Using three independent approaches, we provide direct evidence that ROCKII is activated in response to the myelin-associated inhibitor Nogo. We demonstrate that Nogo treatment enhances ROCKII translocation to the cellular membrane in PC12 cells and enhances ROCKII kinase activity towards an in vitro substrate. In addition, Nogo treatment enhances phosphorylation of myosin light chain II, a known ROCK substrate. Further, we demonstrate that primary dorsal root ganglia neurons can be rendered insensitive to the inhibitory effects of myelin via infection with dominant negative ROCK. Together these data provide direct evidence for a rho-ROCK-myosin light chain-II signaling cascade in response to myelin-associated inhibitors.  相似文献   

8.
Chondroitin sulphate proteoglycans (CSPGs) are axon growth inhibitory molecules present in the glial scar that play a part in regeneration failure after damage to the CNS and which restrict CNS plasticity. Removal of chondroitin sulphate glycosaminoglycan (GAG) chains with chondroitinase-ABC (chABC) in models of CNS injury promotes both axon regeneration and plasticity. We have analysed the immediate and long-term effects of a single injection of chABC on CSPGs, GAGs and axon regeneration. We made unilateral nigrostriatal lesions in adult rats accompanied by an adjacent infusion of either chABC or a bacterial-derived control enzyme (penicillinase). Within 24 h of chABC treatment there was digestion of GAGs, including hyaluronan, and a reduction in neurocan in an area extending 1.5 mm around the injection site. Around 50% of GAG is inaccessible to chABC digestion, even in tissue digested in vitro, which probably represents intracellular stores. In control penicillinase treated animals, total GAGs recovered from the lesioned brains were up-regulated by 4-fold 7 days after injury and gradually decreased to normal at 28 days post-lesion. In chondroitinase-treated animals, the total GAG remained at low level throughout the 28-day experimental period. This suggests the persistence of active chABC for at least 10 days after injection which is able to digest CSPGs released from cells during this time. This was confirmed by immunological detection of enzyme for 10 days and by retrieval of active enzyme from the brain at 10 days after injection. Our results suggest that a single injection of chABC can produce an environment conducive to CNS repair for over 10 days.  相似文献   

9.
The Notch signaling pathway is an evolutionarily‐conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. The Jagged2 (Jag2) gene, which encodes a ligand for Notch pathway receptors, is required for craniofacial, limb, and T cell development. Mice homozygous for a Jag2 null allele die at birth from cleft palate, precluding study of Jag2 function in postnatal and adult mice. We have generated a Jag2 conditional null allele by flanking the first two exons of the Jag2 gene with loxP sites. Cre‐mediated deletion of the Jag2flox allele generates the Jag2del2 allele, which behaves genetically as a Jag2 null allele. This Jag2 conditional null allele will enable investigation of Jag2 function in a variety of tissue‐specific contexts. genesis 48:390–393, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
p120 Ras GTPase-activating protein (RasGAP) encoded by the rasa1 gene in mice is a prototypical member of the RasGAP family of proteins involved in negative-regulation of the p21 Ras proto-oncogene. RasGAP has been implicated in signal transduction through a number of cell surface receptors. In humans, inactivating mutations in the coding region of the RASA1 gene cause capillary malformation arteriovenous malformation. In mice, generalized disruption of the rasa1 gene results in early embryonic lethality associated with defective vasculogenesis and increased apoptosis of neuronal cells. The early lethality in this mouse model precludes its use to further study the importance of RasGAP as a regulator of cell function. Therefore, to circumvent this problem, we have generated a conditional rasa1 knockout mouse. In this mouse, an exon that encodes a part of the RasGAP protein essential for catalytic activity has been flanked by loxP recognition sites. With the use of different constitutive and inducible Cre transgenic mouse lines, we show that deletion of this exon from the rasa1 locus results in effective loss of expression of catalytically-active RasGAP from a variety of adult tissues. The conditional rasa1 mouse will be useful for the analysis of the role of RasGAP in mature cell types.  相似文献   

11.
12.
13.
The epidermal growth factor receptor (EGFR) is important for normal homeostasis in a variety of tissues and, when abnormally expressed or mutated, contributes to the development of many diseases. However, in vivo functional studies are hindered by the lack of adult mice lacking EGFR because of the pre‐ and postnatal lethality of EGFR deficient mice. We generated a conditional allele of Egfr (Egfrtm1Dwt) by flanking exon 3 with loxP sites in order to investigate tissue‐specific functions of this widely expressed receptor tyrosine kinase. The activity of the Egfrtm1Dwt allele is indistinguishable from wildtype Egfr. Conversely, the EgfrΔ allele, generated by Cre‐mediated deletion of exon 3 using the germline EIIa‐Cre transgenic line, functions as a null allele. EgfrΔ/Δ embryos that have complete ablation of EGFR activity and die at mid‐gestation with placental defects identical to those reported for mice homozygous for the Egfrtm1Mag null allele. We also inactivated the Egfrtm1Dwt allele tissue‐specifically in the skin epithelium using the K14‐Cre transgenic line. These mice were viable but exhibited wavy coat hair remarkably similar to mice homozygous for the Egfrwa2 hypomorphic allele or heterozygous for the EgfrWa5 antimorphic allele. These results suggest that the hairless phenotype of Egfr nullizygous mice is not solely due to absence of EGFR in the epithelium, but that EGFR activity is required also in skin stromal cells for normal hair morphogenesis. This new mouse model should have wide utility to inactivate Egfr conditionally for functional analysis of EGFR in adult tissues and disease states. genesis 47:85–92, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Axon growth-promoting and -inhibitory molecules are likely to work in concert to promote and guide axons in vivo. In adult mammals, inhibitory molecules associated with myelin in the white matter of the central nervous system (CNS) play an important role in the failure of long-distance axon regeneration. The presence of neurite growth-inhibitory molecules in the adult rat gray matter has not been extensively studied. In this article we describe work on the characterization of neurite growth-inhibitory activity in the adult rat cerebral cortical gray matter using various biochemical and cell culture approaches. We show using a neuronal cell line (NG108–-15 cells) that neurite growth-inhibitory activity is present in membrane preparations of the cortical gray matter. Purified gray matter membranes also induce growth cone collapse of cultured embryonic rat dorsal root ganglion neurons. The inhibitory activity in the membrane preparations is extractable with 3-[(3-cholamidoprophyl)-dimethylammonio]-1-propane-sulfonate, but does not appear to be depleted by various lectins. Western blots and enzyme treatments showed that the inhibitory effect of the gray-matter preparations is not likely to be mediated by myelin-associated inhibitors or chondroitin sulfate proteoglycans. However, tenascin was detected in these samples and may contribute to some of the inhibitory activity. Selective separation of the inhibitory molecules can be achieved by ion-exchange chromatography, which also suggests the presence of multiple inhibitors in cortical gray matter membranes. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 671–683, 1997  相似文献   

15.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF‐induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP‐43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF‐induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 51–66, 1999  相似文献   

16.
One of the reasons for the lack of nerve regeneration in the CNS is the formation of a glial scar over-expressing multiple inhibitory factors including myelin-associated proteins and members of the Semaphorin family. Innovative therapeutic strategies must stimulate axon extension across the lesion site despite this inhibitory molecular barrier. We recently developed a synthetic neurotrophic compound combining an omega-alkanol with a retinol-like cycle (3-(15-hydroxy-pentadecyl)-2,4,4,-trimethyl-cyclohexen-2-one (tCFA15)). Here, we demonstrate that tCFA15 is able to promote cortical axon outgrowth in vitro even in the presence of the inhibitory Semaphorin 3A and myelin extracts. This growth-promoting effect is selectively observed in axons and requires multiple growth-associated intracellular pathways. Our results illustrate the potential use of synthetic neurotrophic compounds to promote nerve regeneration by counteracting the axonal growth inhibition triggered by glial scar-associated inhibitory factors.  相似文献   

17.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

18.
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. We previously described construction and analysis of a hypomorphic allele of the Notch2 gene. Homozygosity for this allele leads to embryonic and perinatal lethality due to cardiovascular and kidney defects. We report here novel Notch2 mutant alleles generated by gene targeting in embryonic stem cells, including a conditional null allele in which exon 3 of the Notch2 gene is flanked by loxP sequences. These new Notch2 mutant alleles expand the set of tools available for studying the myriad roles of the Notch pathway during mammalian development and will enable analysis of Notch2 function at additional stages of embryogenesis and in adult mice.  相似文献   

19.
The genome of the fission yeast Schizosaccharomyces pombe encodes for 17 protein kinases that are essential for viability. Studies of the essential kinases often require the use of mutant strains carrying conditional alleles. To inactivate these kinases conditionally, we applied a recently developed chemical genetic strategy. The mutation of a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors, allowing for specific inactivation of the modified kinase. Using this approach, we constructed conditional analog-sensitive alleles of 13 essential protein kinases in the fission yeast S. pombe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号