首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously reported that Monad, a novel WD40 repeat protein, potentiates apoptosis induced by tumor necrosis factor-alpha(TNF-alpha) and cycloheximide (CHX). By affinity purification and mass spectrometry, we identified RNA polymerase II-associated protein 3 (RPAP3) as a binding protein of Monad. Overexpression of RPAP3 in HEK 293 potentiated caspase-3 activation and apoptosis induced by TNF-alpha and CHX. In addition, knockdown of RPAP3 by RNA interference resulted in a significant reduction of apoptosis induced by TNF-alpha and CHX in HEK293 and HeLa cells. These results raise the possibility that RPAP3, together with Monad, may function as a novel modulator of apoptosis pathway.  相似文献   

3.
Activation of the melanocortin 1 receptor (MC1R) by α‐melanocortin (α‐MSH) stimulates eumelanin synthesis and enhances repair of ultraviolet radiation (UV)‐induced DNA damage. We report on the DNA damage response (DDR) of human melanocytes to UV and its enhancement by α‐MSH. α‐MSH up‐regulated the levels of XPC, the enzyme that recognizes DNA damage sites, enhanced the UV‐induced phosphorylation of the DNA damage sensors ataxia telangiectasia and Rad3‐related (ATR) and ataxia telangiectasia mutated (ATM) and their respect‐ive substrates checkpoint kinases 1 and 2, and increased phosphorylated H2AX (γH2AX) formation. These effects required functional MC1R and were absent in melanocytes expressing loss of function (LOF) MC1R. The levels of wild‐type p53‐induced phosphatase 1 (Wip1), which dephosphorylates γH2AX, correlated inversely with γH2AX. We propose that α‐MSH increases UV‐induced γH2AX to facilitate formation of DNA repair complexes and repair of DNA photoproducts, and LOF of MC1R compromises the DDR and genomic stability of melanocytes.  相似文献   

4.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.  相似文献   

5.
Damage to DNA that engenders double-strand breaks (DSBs) triggers phosphorylation of histone H2AX on Ser-139. Expression of phosphorylated H2AX (_H2AX) can be revealed immunocytochemically; the intensity of ?H2AX immunofluorescence (IF) measured by cytometry was reported to correlate with the frequency of DSBs induced by X-ray radiation or by DNA damaging antitumor drugs. The aim of the present study was to measure expression of ?H2AX following exposure of HeLa and HL-60 cells to a wide range of doses of UV-B light (6.1 J/m2-3.45 kJ/m2) and using multiparameter flow and laser scanning cytometry (LSC) to correlate DNA damage with cell cycle phase and induction of apoptosis. In both cell lines, the highest degree of H2AX phosphorylation induced by UV was seen in S-phase cells, particularly during early portion of S. In cells that did not replicate DNA (G1, G2 and M) the degree of H2AX phosphorylation was markedly lower than that in S-phase cells, and was strongly UV dose-dependent. Furthermore, the level of UV-induced γH2AX in G1, G2 and M was much higher in HeLa- than in HL-60-cells. Apoptotic cells become apparent >2h after exposure to UV and exhibited nearly an order of magnitude higher intensity of γH2AX IF than that initially induced by UV; predominantly S-phase cells underwent apoptosis. While the suppression of DNA replication aphidicolin prevented the induction of H2AX phosphorylation by UV in most S phase cells, it had no effect on a small cohort of cells that appeared to be entering S-phase, that expressed very high levels of γH2AX. Furthermore, aphidicolin itself induced γH2AX in early-S phase cells. The induction of γH2AX by UV was inhibited, but the incidence of apoptosis increased, by 5 mM caffeine, a known inhibitor of PI-3-related kinases. The data are consistent with the notion that H2AX phosphorylation observed throughout S phase reflects formation of DSBs due to the collision of replication forks with the UV-induced primary DNA lesions. Induction of γH2AX in GG1, GG2 and M is likely a response to the primary DSBs generated during UV exposure and/or DNA repair. It is unclear why the latter process was more pronounced in HeLa than in HL-60 cells.  相似文献   

6.
Lu C  Zhu F  Cho YY  Tang F  Zykova T  Ma WY  Bode AM  Dong Z 《Molecular cell》2006,23(1):121-132
Immunofluorescence studies have revealed that H2AX is phosphorylated at the sites of DNA double-strand breaks induced by ionizing radiation and is required for recruitment of repair factors into nuclear foci after DNA damage. Therefore, the function of H2AX is believed to be associated primarily with repair of DNA damage. Here, we report a function of H2AX in cellular apoptosis. Our data showed that H2AX is phosphorylated by UVA-activated JNK. We also provided evidence showing that UVA induces caspase-3 and caspase-activated DNase (CAD) activity in both H2AX wild-type and H2AX knockout mouse embryonic fibroblasts (MEFs). However, DNA fragmentation occurred only in H2AX wild-type MEFs. Furthermore, H2AX phosphorylation was critical for DNA degradation triggered by CAD in vitro. Taken together, these data indicated that H2AX phosphorylation is required for DNA ladder formation, but not for the activation of caspase-3; and the JNK/H2AX pathway cooperates with the caspase-3/CAD pathway resulting in cellular apoptosis.  相似文献   

7.
8.
Background information. Treatment of cells with UVC radiation leads to the formation of DNA cross‐links which, if not repaired, can lead to apoptosis. γ‐H2AX and cleaved caspase 3 are proteins formed during UVC‐induced DNA damage and apoptosis respectively. The present study sets out to identify early morphological markers of apoptosis using a new method of correlative microscopy, ILEM (integrated laser electron microscopy). Cleaved caspase 3 and γ‐H2AX were immunofluorescently labelled to mark the cells of interest. These cells were subsequently searched in the fluorescence mode of the ILEM and further analysed at high resolution with TEM (transmission electron microscopy). Results. Following the treatment of HUVECs (human umbilical vein endothelial cells) with UVC radiation, in the majority of the cells γ‐H2AX was formed, whereas only in a subset of cells caspase 3 was activated. In severely damaged cells with high levels of γ‐H2AX a round, electron‐dense nuclear structure was found, which was hitherto not identified in UV‐stressed cells. This structure exists only in nuclei of cells containing cleaved caspase 3 and is present during all stages of the apoptotic process. Energy‐loss imaging showed that the nuclear structure accumulates phosphorus, indicating that it is rich in nucleic acids. Because the nuclear structure did not label for DNA and was not affected by regressive EDTA treatment, it is suggested that the UV‐induced nuclear structure contains a high amount of RNA. Conclusions. Because the UV‐induced nuclear structure was only found in cells labelled for cleaved caspase 3 it is proposed as an electron microscopic marker for all stages of apoptosis. Such a marker will especially facilitate the screening for early apoptotic cells, which lack the well‐known hallmarks of apoptosis within a cell population. It also raises new questions on the mechanisms involved in the UV‐induced apoptotic pathway.  相似文献   

9.
Infected cells recognize viral replication as a DNA damage stress and elicit a DNA damage response that ultimately induces apoptosis as part of host immune surveillance. Here, we demonstrate a novel mechanism where the murine gamma herpesvirus 68 (gammaHV68) latency-associated, anti-interferon M2 protein inhibits DNA damage-induced apoptosis by interacting with the DDB1/COP9/cullin repair complex and the ATM DNA damage signal transducer. M2 expression constitutively induced DDB1 nuclear localization and ATM kinase activation in the absence of DNA damage. Activated ATM subsequently induced Chk activation and p53 phosphorylation and stabilization without eliciting H2AX phosphorylation and MRN recruitment to foci upon DNA damage. Consequently, M2 expression inhibited DNA repair, rendered cells resistant to DNA damage-induced apoptosis, and induced a G(1) cell cycle arrest. Our results suggest that gammaHV68 M2 blocks apoptosis-mediated intracellular innate immunity, which might ultimately contribute to its role in latent infection.  相似文献   

10.
Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.  相似文献   

11.
Lu C  Shi Y  Wang Z  Song Z  Zhu M  Cai Q  Chen T 《FEBS letters》2008,582(18):2703-2708
Phosphorylation of H2AX is believed to be associated with the repair of damaged DNA. Recent findings suggest a novel function of H2AX in cellular apoptosis. Specifically, it was shown that ultraviolet A-activated JNK phosphorylates H2AX to regulate apoptosis. Here we show that serum starvation induces H2AX phosphorylation and apoptosis independent of the JNK pathway. Serum starvation induced p38 phosphorylation, whereas it did not affect the phosphorylation of ERK or JNK. Inhibition of p38 reduced H2AX phosphorylation and apoptosis. Furthermore, p38 was found to phosphorylate H2AX directly in vitro and was colocalized with H2AX in vivo. Finally, we demonstrate that H2AX phosphorylation is required for serum starvation-induced apoptosis. Taken together, these data elucidate a novel signaling pathway (p38/H2AX) to regulate apoptosis.  相似文献   

12.
DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM), which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein), as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.  相似文献   

13.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair.  相似文献   

14.
DNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci. Mechanistically, we show that monoubiquitination of H2AX induced by RING finger protein 2 (RNF2) is required for the recruitment of active ataxia telangiectasia mutated to DNA damage foci, thus affecting the formation of γ-H2AX. Importantly, a defect in monoubiquitination of H2AX profoundly enhances ionizing radiation sensitivity. Our study therefore suggests that monoubiquitination of H2AX is an important step for DNA damage response and may have important clinical implications for the treatment of cancers.  相似文献   

15.
Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 μM, 30 min) or γ irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.  相似文献   

16.
17.

Background

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

Methodology/Principal Findings

To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity.

Conclusions/Significance

These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity.  相似文献   

18.
Deregulation of the DNA damage response (DDR) pathway could compromise genomic integrity in normal cells and reduce cancer cell sensitivity to anticancer treatments. We found that intercellular contact stabilizes histone H2AX and γH2AX (H2AX phosphorylated on Ser-139) by up-regulating N/E-cadherin and γ-catenin. γ-catenin and its DNA-binding partner LEF-1 indirectly increase levels of H2AX by suppressing the promoter of the RNF8 ubiquitin ligase, which decreases levels of H2AX protein under conditions of low intercellular contact. Hyperphosphorylation of DDR proteins is induced by up-regulated H2AX. Constitutive apoptosis is caused in confluent cells but is not further induced by DNA damage. This is conceivably due to insufficient p53 activation because ChIP assay shows that its DNA binding ability is not induced in those cells. Together, our results illustrate a novel mechanism of the regulation of DDR proteins by the cadherin-catenin pathway.  相似文献   

19.
20.
We showed that gamma irradiation of the developing mouse brain with 2 Gy induced a massive apoptosis of neural precursors but not of neurons within 24 h. Successive phosphorylation and dephosphorylation of histone H2AX have been linked to DNA breaks and repair. Similar numbers of nuclear foci of phosphorylated H2AX (gamma-H2AX) were found 1 h postirradiation in neural precursors and in neurons, suggesting that differences in radiosensitivity were not related to variations in the numbers of DNA double-strand breaks induced by radiation. Surviving neural precursors like neurons totally lost gamma-H2AX within 24 h after irradiation, but they had a slower kinetics of loss of gamma-H2AX foci. This suggests that the DNA repair machinery processed damage more slowly in these neural precursors in relation to their greater radiosensitivity. We also found a bright and diffuse gamma-H2AX staining of nuclei of cells at an early stage of apoptosis, whereas cells at later stages of apoptosis were unstained. This was probably related to phosphorylation and subsequent degradation of H2AX in the course of DNA fragmentation during apoptosis. Detection of gamma-H2AX-bright nuclei may thus be a useful marker of neural cells at an early stage of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号