首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spider species Trogloneta granulum, which in the wild lives inside scree slopes, builds three-dimensional orb webs. During egg-laying and egg sac building, the females stay with their dorsa down at the central part of the web. In this process, the hub is used as a platform. The threads of the hub are not incorporated into the silk cover of the egg sac. The silk wall of the egg sac is very thin, with all the silken threads constituting it having a uniform ultrastructure. The silk wall of the egg sac and the spinnerets are permanently linked by a dragline. Draglines produced by T. granulum affect the direction of movements of the female carrying its cocoon. Egg sacs are handled using draglines. The low number of piriform glands leads to the formation of very simple attachment discs, which fix the individual threads to the substratum. Thread bundles are attached to the substratum by means of accumulated attachment discs.  相似文献   

2.
Araneoid spiders use specialized abdominal glands to manufacture up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode egg case fibers (cover silk for the egg case sac) and the secondary structure of these threads have not been previously determined. In this study, MALDI tandem TOF mass spectrometry (MS/MS) and reverse genetics were used to isolate the first egg case fibroin, named tubuliform spidroin 1 (TuSp1), from the black widow spider, Latrodectus hesperus. Real-time quantitative PCR analysis demonstrates TuSp1 is selectively expressed in the tubuliform gland. Analysis of the amino acid composition of raw egg case silk closely aligns with the predicted amino acid composition from the primary sequence of TuSp1, which supports the assertion that TuSp1 represents a major component of egg case fibers. TuSp1 is composed of highly homogeneous repeats that are 184 amino acids in length. The long stretches of polyalanine and glycine-alanine subrepeats, which account for the crystalline regions of minor ampullate and major ampullate fibers, are very poorly represented in TuSp1. However, polyserine blocks and short polyalanine stretches were highly iterated within the primary sequence, and (13)C NMR spectroscopy demonstrated that the majority of alanine was found in a beta-sheet structure in post-spun egg case silk. The TuSp1 repeat unit does not display substantial sequence similarity to any previously described fibroin genes or proteins, suggesting that TuSp1 is a highly divergent member of the spider silk gene family.  相似文献   

3.
Orb weaver spiders use exceptionally complex spinning processes to transform soluble silk proteins into solid fibers with specific functions and mechanical properties. In this study, to understand the nature of this transformation we investigated the structural changes of the soluble silk proteins from the major ampullate gland (web radial threads and spider safety line); flagelliform gland (web sticky spiral threads); minor ampullate gland (web auxiliary spiral threads); and cylindrical gland (egg sac silk). Using circular dichroism, we elucidated (i) the different structures and folds for the various silk proteins; (ii) irreversible temperature-induced transitions of the various silk structures toward beta-sheet-rich final states; and (iii) the role of protein concentration in silk storage and transport. We discuss the implication of these results in the spinning process and a possible mechanism for temperature-induced beta-sheet formation.  相似文献   

4.
Spider silks display generally strong mechanical properties, even if differences between species and within the same species can be observed. While many different types of silks have been tested, the mechanical properties of stalks of silk taken from the egg sac of the cave spider Meta menardi have not yet been analyzed. Meta menardi has recently been chosen as the "European spider of the year 2012", from the European Society of Arachnology. Here we report a study where silk stalks were collected directly from several caves in the north-west of Italy. Field emission scanning electron microscope (FESEM) images showed that stalks are made up of a large number of threads, each of them with diameter of 6.03 ± 0.58 μm. The stalks were strained at the constant rate of 2 mm/min, using a tensile testing machine. The observed maximum stress, strain and toughness modulus, defined as the area under the stress-strain curve, are 0.64 GPa, 751% and 130.7 MJ/m(3), respectively. To the best of our knowledge, such an observed huge elongation has never been reported for egg sac silk stalks and suggests a huge unrolling microscopic mechanism of the macroscopic stalk that, as a continuation of the protective egg sac, is expected to be composed by fibres very densely and randomly packed. The Weibull statistics was used to analyze the results from mechanical testing, and an average value of Weibull modulus (m) is deduced to be in the range of 1.5-1.8 with a Weibull scale parameter (σ(0)) in the range of 0.33-0.41 GPa, showing a high coefficient of correlation (R(2) = 0.97).  相似文献   

5.
Spiders produce high performance fibers with diverse mechanical properties and biological functions. Molecular and biochemical studies of spider egg case silk have revealed that the main constituent of the large diameter fiber contains the fibroin TuSp1. Here we demonstrate by SDS-PAGE and protein silver staining the presence of a distinct approximately 300-kDa polypeptide that is found in solubilized egg case sacs. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called AcSp1-like and demonstrate that its protein product is assembled into the small diameter fibers of egg case sacs and wrapping silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein data base using the amino acid sequence of AcSp1-like revealed similarity to AcSp1, an inferred protein proposed to be a component of wrapping silk. However, the AcSp1-like protein was found to display more nonuniformity in its internal iterated repeat modules than the putative AcSp1 fibroin. Real time quantitative PCR analysis demonstrates that the AcSp1-like gene displays an aciniform gland-restricted pattern of expression. The amino acid composition of the fibroins extracted from the luminal contents of the aciniform glands was remarkably similar to the predicted amino acid composition of the AcSp1-like protein, which supports the assertion that AcSp1-like protein represents the major constituent stored within the aciniform gland. Collectively, our findings provide the first direct molecular evidence for the involvement of the aciniform gland in the production of a common fibroin that is assembled into the small diameter threads of egg case and wrapping silk of cob weavers.  相似文献   

6.
利用扫描电镜、氨基酸分析仪、X-衍射仪和单纤维电子强力仪分别对悦目金蛛Argiopeamoena拖丝、网框丝和卵袋丝的超微结构和理化特性进行了测试和观察。结果表明,悦目金蛛卵袋不是由一种结构均一的丝纤维构成,而是由直径相差悬殊的Ⅰ型卵袋丝和Ⅱ型卵袋丝2种丝纤维共同组成,该结果对卵袋丝仅由管状腺产生的观点提出了疑问。在氨基酸组成上悦目金蛛拖丝和网框丝相似,但其卵袋丝的氨基酸组成与拖丝和网框丝相比差别明显。另外还发现卵袋丝的强度、结晶度大于拖丝和网框丝,而它的延伸性能却不及拖丝和网框丝。  相似文献   

7.
Ultrastructure of fibroin in the silk gland of larval Bombyx mori   总被引:1,自引:0,他引:1  
The fibroin molecules stored in Golgi vacuoles in the posterior silk gland cells of 72-h-old, fifth instar larvae of Bombyx mori L. were observed electron-microscopically. The fibers which float in the Golgi vacuoles often have their ends attached to the limiting membrane. The fibers are helical bundles about 130 Å in diameter composed of 5–7 threads, each 20–30 Å thick.  相似文献   

8.
TuSp1蛋白(tubuliform spidroin 1)是管状腺丝(tubuliform silkfiber)的主要组成成分。管状腺丝作为蛛丝卵袋的外层包卵丝,其结构具有很好的耐腐蚀性和良好的力学性能。目前国内外对大腹园蛛TuSp1蛋白的研究很少,仅有一条基因序列的报道。本课题首次构建含大腹园蛛N端非重复结构域、重复单元以及C端非重复结构域的重组管状腺丝蛋白TuSp1 NT-Rp-CT,并经湿法纺丝获得重组蛋白丝纤维。重组蛋白液圆二色谱分析结果显示,pH由7. 0降低到5. 5的过程中,始终保持稳定的α-螺旋构象;重组蛋白丝纤维的傅里叶变换红外光谱结果显示,丝纤维中主要二级结构为β-折叠及β-转角;经扫描电镜观察发现,冻干的絮状重组蛋白能自组装成丝纤维,且表面光滑纤细;湿纺后的重组蛋白丝纤维直径较粗,但表面较平整均匀,具有类似天然管状腺丝的形态特征,这些为TuSp1蛋白的成丝机理及仿生纺丝研究提供了理论依据。  相似文献   

9.
Abstract. Waitkera waitakerensis occupies lowland forests of New Zealand's North Island, where temperatures decrease in a southwestward direction. The mean annual temperatures of 18 collecting sites, as extracted from GIS data, are directly related to the first femur length of adult females. Neither site elevation nor phylogeny affected spider size or other variables examined. The direct relationship between spider body size and environmental temperature followed a pattern observed in other terrestrial arthropods with a univoltine life cycle and can probably be explained by the longer growing season of warmer regions. Egg diameter was uniform across the species. Site temperature and female first femur length were each directly related to the number of eggs deposited in egg sacs. The date of egg sac collection was inversely related to egg number, suggesting that clutch size declines during the reproductive season. Females deposit eggs beneath a triangular platform and then cover them with a lower silk sheet. The area of this upper platform and the volume of the egg sac were each directly related to egg number, but not to female first femur length. The depth of the lower covering was not related to egg number or to spider first femur length. This suggests that spiders use information about the volume of eggs in their abdomens to construct an egg sac whose volume will accommodate the volume of eggs to be laid and that females do so principally by adjusting the size of the sac's upper triangular platform.  相似文献   

10.
Despite much interest in the extraordinary mechanical properties of silks, the structure of native silk fibers is still not fully understood. In the present study, the morphology, topography, and organization of insect and spider cocoon silks were investigated using a range of imaging methods. Field emission scanning electron microscopy was used to observe transverse and longitude structures in silk fibers subjected to tensile fracturing, freeze fracturing, or polishing. In addition, ultrathin sections of silk brins embedded in resin were examined using transmission electron microscopy. Finally, dry silk brins were examined by confocal microscopy. The results confirmed the existence of well-oriented bundles of nanofibrils in all the silks examined and gave an indication of a hierarchical construction of the brin. Observed separation of the microfibrils in fractured brins suggests that the multifibrillar structure of the silk fiber contributes to toughness by allowing dissipation of energy in the controlled propagation of cracks.  相似文献   

11.
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In our studies we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus. Analysis of the physical structure of egg case silk using scanning electron microscopy demonstrates the presence of small and large diameter fibers. By using the strong protein denaturant 8 M guanidine hydrochloride to solubilize the fibers, we demonstrated by SDS-PAGE and protein silver staining that an abundant component of egg case silk is a 100-kDa protein doublet. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called ecp-1, which encodes for one of the protein components of the 100-kDa species. BLAST searches of the NCBInr protein data base using the primary sequence of ECP-1 revealed similarity to fibroins from spiders and silkworms, which mapped to two distinct regions within the ECP-1. These regions contained the conserved repetitive fibroin motifs poly(Ala) and poly(Gly-Ala), but surprisingly, no larger ensemble repeats could be identified within the primary sequence of ECP-1. Consistent with silk gland-restricted patterns of expression for fibroins, ECP-1 was demonstrated to be predominantly produced in the tubuliform gland, with lower levels detected in the major and minor ampullate glands. ECP-1 monomeric units were also shown to assemble into higher aggregate structures through the formation of disulfide bonds via a unique cysteine-rich N-terminal region. Collectively, our findings provide new insight into the components of egg case silk and identify a new class of silk proteins with distinctive molecular features relative to traditional members of the spider silk gene family.  相似文献   

12.
棒络新妇和悦目金蛛拖丝超微结构与力学行为   总被引:2,自引:0,他引:2  
采用SEM对棒络新妇Nephila clavata腹部向上和向下在水平纱窗上爬行时纺出的拖丝、悦目金蛛Argiope amoena捕食拖丝与垂直向下缓慢纺出的拖丝及其圆网的铆钉丝进行了超微结构观察,采用电子单纤强力仪对棒络新妇拖丝与悦目金蛛圆网铆钉丝进行了力学拉伸试验.结果 表明棒络新妇和悦目金蛛拖丝均呈现出一至多根细丝纤维的多样化超微结构特征,其中悦目金蛛圆网铆钉丝还呈现出"S"形似弹簧的结构.两种蜘蛛丝的力学行为和性能与各自的功能要求相一致.蜘蛛能调节拖丝的超微结构、纤维组成和直径大小以适应其在不同环境条件下对力学性能和功能的瞬时需要.研究结果有助于拓宽和加深人们对蜘蛛丝超微结构、力学性能与生物学功能之间关系的认识和理解.  相似文献   

13.
The surfaces of both stretched and unstretched silk threads from the cobweb weaver, Latrodectus hesperus (Black Widow) have been examined by atomic force microscopy (AFM). AFM images of cobweb scaffolding threads show both unordered and highly ordered regions. Two types of fibers within the threads were observed: thicker (approximately 300 nm in diameter) fibers oriented parallel to the thread axis and thinner (10-100 nm) fibrils oriented across the thread axis. While regions which lacked parallel fibers or fibrils were observed on threads at all strain values, the probability of observing fibers and/or fibrils increased with strain. High-resolution AFM images show that with increasing strain, both mean fiber and fibril diameters decrease and that fibrils align themselves more closely with the thread axis. The observation of fibers and fibrils within the cobweb threads has implications for current models of the secondary and tertiary structure and organization of spider silk.  相似文献   

14.
大叶冬青、枸骨叶的结构与苦丁茶基本相似:背腹叶;栅栏组织数层;外韧维管束;小维管束具维管束鞘;气孔仅分布于下表皮,有无规则型和轮列型两种;叶内有纤维、石细胞。叶内都含有单宁、淀粉、脂类及少量草酸钙结晶。叶结构主要区别在于苦丁茶叶主脉维管束成心形的环,另两种呈弧形;枸骨叶缘有横跨叶断面的大纤维束,而另两种叶缘仅少量纤维。  相似文献   

15.
Ejaculated spermatozoa from Discoglossus pictus are grouped in bundles, where they are embedded in a network of interwoven threads. Their heads and tails move when exposed to the outermost egg jelly layer, when the bundles are spread across a glass slide or a poly-L-lysine-coated polystyrene tissue culture dish. While moving, single spermatozoa emerge from the bundle and eventually become able to fuse with egg. Spermatozoa were studied by means of immunofluorescent staining, using specific antibodies against actin, myosin, and tubulin, and by means of electron microscopy. Antiactin antibodies stain both the heads and the ridge (which contains the axoneme) of the tail's undulating membrane. Antimyosin antibodies stain the head segment covered by the acrosome cap, and antitubulin antibodies stain the axoneme. The presence of actin and myosin in the spermatozoon head may provide the molecular basis for a cytoskeletal and/or a contractile system which could be involved in the motion sequence as well as subsequent steps of fertilization.  相似文献   

16.
An elastic protein with a secondary structure distinct from all well-known load-bearing proteins is found in the byssus of the giant clam, Tridacna maxima . The byssus consists of a bundle of hundreds of individual threads, each measuring about about 100 μm in diameter, which exhibit a tendon-like mechanical response. The amino acid composition of Tridacna byssus, however, is unlike tendon collagen, lacking high glycine, proline, and hydroxyproline. Wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) measurements suggest that the constituent nanofibrils of the byssal threads are distinct from known secondary structure motifs previously reported for elastic proteins including the collagen triple-helix, the β-sheet nanocrystalline domains of silks, or the double-stranded coiled-coil regions of intermediate filaments. Instead, X-ray diffraction data indicate a structural organization in which four coiled-coil α-helices form a stable rope-like structure, which then further pack in a pseudohexagonal lattice to form nanofibrils. Amino acid composition analysis shows unusually high concentrations of acidic as well as basic residues, suggesting that the four-helix structure is stabilized by strong ionic interactions between oppositely charged residues in neighboring strands. The composition also suggests additional stabilization by disulfide cross-linking. On a larger scale, scanning and conventional transmission electron microscope (STEM and TEM) observations indicate that the nanofibrils exhibit an alternating periodicity of about 500 nm along the axial direction. A molecular model that combines the mechanical properties with the structural characteristics of the Tridacna byssal threads is proposed.  相似文献   

17.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

18.
Caddisflys (order Trichoptera) construct elaborate protective shelters and food harvesting nets with underwater adhesive silk. The silk fiber resembles a nanostructured tape composed of thousands of nanofibrils (~ 120 nm) oriented with the major axis of the fiber, which in turn are composed of spherical subunits. Weaker lateral interactions between nanofibrils allow the fiber to conform to surface topography and increase contact area. Highly phosphorylated (pSX)(4) motifs in H-fibroin blocks of positively charged basic residues are conserved across all three suborders of Trichoptera. Electrostatic interactions between the oppositely charged motifs could drive liquid-liquid phase separation of silk fiber precursors into a complex coacervates mesophase. Accessibility of phosphoserine to an anti-phosphoserine antibody is lower in the lumen of the silk gland storage region compared to the nascent fiber formed in the anterior conducting channel. The phosphorylated motifs may serve as a marker for the structural reorganization of the silk precursor mesophase into strongly refringent fibers. The structural change occurring at the transition into the conducting channel makes this region of special interest. Fiber formation from polyampholytic silk proteins in Trichoptera may suggest a new approach to create synthetic silk analogs from water-soluble precursors.  相似文献   

19.
采用植物解剖学、显微切片技术等,分别对海南龙血树含有树脂的茎、不含树脂的茎、幼根和叶片等进行了系统的组织学研究。结果表明:老茎主要由栓化层、皮层、形成层和基本组织4部分组成,树脂主要分布在基本组织内维管束的导管和纤维中。叶片为等面叶,气孔主要分布在下表皮上、具有明显的孔下室,上下表皮内侧分布着大量的纤维束。幼根由根被细胞、皮层和维管柱组成。根、茎、叶的部分薄壁细胞中均含有晶束。海南龙血树营养器官的结构特征与干旱、高温和贫瘠的生态环境相适应。这些结果可为海南龙血树的开发和利用提供基本的解剖学证据。  相似文献   

20.
蜘蛛丝是一种具有优良机械性能的天然动物蛋白纤维,它特有的结构和性能与其生物学功能密切相关。作者采用氨基酸自动分析仪、傅立叶转换红外光谱仪、扫描电镜和电子单纤强力仪对悦目金蛛(Argiope amoena)和棒络新妇(Nephila clavata)的卵袋丝进行了物理化学结构表征与力学性能的研究,结果表明两种蜘蛛卵袋均由微米级柱状腺丝、大壶状腺丝、亚微米级或纳米级葡萄状腺丝构成。卵袋丝的表面形貌特征、极性氨基酸含量、大侧链与小侧链氨基酸的比值、无定型区、β-折叠结构与结晶结构的含量等氨基酸组成种类与蛋白质二级结构特征,均满足各自生物学功能对断裂强度、延展性、初始模量等力学性能的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号