首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNFalpha and TNFbeta, or linfotoxin (LTalpha), are two molecules playing an important role in inflammation. Their genes map on Chromosome 6, between the HLA class II and class I loci. Polymorphisms in, or near, TNF genes have been associated with susceptibility to several autoimmune diseases. Studies of TNF genes in celiac disease (CD) have presented contradictory results. We have assessed the role of TNFalpha and linfotoxin alpha (TNFbeta) in CD and their relative value as CD markers in addition to the presence of DQ2. The TNFA -308 polymorphism and the polymorphism at the first intron of the LTA gene were typed in CD patients and healthy controls and the results were correlated with the presence of DQ2. Significant differences were found in genotype and allele frequencies for the TNFA and LTA genes between CD patients and controls, with an increase in the presence of the TNFA*2 and LTA*1 alleles in CD patients. These differences increase when DQ2-positive CD patients and DQ2-positive controls are compared. In DQ2-positive individuals, allele 2 (A) in position -308 of the promoter of TNFA and allele 1 (G) of the NcoI RFLP in the first intron of LTA are additional risk markers for CD.  相似文献   

2.
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions, several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene. Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.  相似文献   

3.
An interspecific cross (BC 1) involving a species with one of the largest genomes in the Coffea genus [Coffea heterocalyx (HET), qDNA = 1.74 pg] and a species with a medium-sized genome [Coffea canephora (CAN), qDNA = 1.43 pg] was studied using two types of molecular markers, AFLP and SSR. One hundred and eighty eight AFLP bands and 34 SSR primer pairs were suitable for mapping. The total map length was 1,360 cM with 190 loci distributed in 15 linkage groups. The results were compared to those obtained previously on an interspecific BC 1 progeny involving a species with a medium-sized genome (Coffea liberica var dewevrei, DEW) and a species with one of the smallest genomes (Coffea pseudozanguebariae, PSE). They are discussed relative to three main points: (1) the relevance of the different marker types, (2) the genomic distribution of AFLP and SSR markers, and (3) the relation between AFLP polymorphism and genome size.Communicated by H.F. Linskens  相似文献   

4.

Background  

The presence of β-lactamases in Y. enterocolitica has been reported to vary with serovars, biovars and geographical origin of the isolates. An understanding of the β-lactamases in other related species is important for an overall perception of antibiotic resistance in yersiniae. The objective of this work was to study the characteristics of β-lactamases and their genes in strains of Y. intermedia and Y. frederiksenii, isolated from clinical and non-clinical sources in India.  相似文献   

5.
A novel 4-hydroxyphenylpyruvate dioxygenase gene (designated as Smhppd) was cloned from hairy roots of Salvia miltiorrhiza Bung. The full-length cDNA of Smhppd was 1,736 bp long with an ORF (open reading frame) that putatively encoded a polypeptide of 481 amino acids, with a predicted molecular mass of 52.54 kDa. The deduced amino acid sequence of the Smhppd gene shared high homology with other known HPPDs. Analysis of Smhppd genomic DNA revealed that it contained two exons and one intron. The analysis of Smhppd promoter region was also presented. Southern-blot analysis revealed that the Smhppd was a low-copy gene in S. miltiorrhiza. Real-time quantitative PCR analysis indicated that Smhppd was constitutively expressed in roots, stems and leaves of S. miltiorrhiza, with the high expression in roots. In addition, Smhppd expreession level under different stress condition was also analyzed during the hairy root culture period, including signaling components for plant defence responses, such as methyl jasmonate and salicylic acid, as well as an abiotic elicitor, Ag+ and a biotic elicitor, yeast extract. This study will enable us to further understand the role Smhppd plays in the synthesis of active pharmaceutical compounds in S. miltiorrhiza at molecular level.  相似文献   

6.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

7.
The blattisociid mite Lasioseius floridensis Berlese was found associated with the broad mite, Polyphagotarsonemus latus (Banks), on gerbera leaves in Mogi das Cruzes, State of Sao Paulo, Brazil. Blattisociid mites are not common on aerial plant parts, except under high air humidity levels. Some Lasioseius species have been mentioned as effective control agents of rice pest mites, but nothing is known about the biology of L. floridensis. The objective of this study was to evaluate whether the observed co-occurrence of L. floridensis and P. latus was just occasional or whether the latter could be important as food source for the former, assumed by laboratory evaluation of the ability of the predator to maintain itself, reproduce and develop on that prey. Biological parameters of L. floridensis were compared when exposed to P. latus and to other items as food. The study showed that mating is a pre-requisite for L. floridensis to oviposit and that oviposition rate was much higher on the soil nematode Rhabditella axei (Cobbold) (Rhabditidae) than on P. latus. Ovipositon on the acarid mite Tyrophagus putrescentiae (Schrank) was about the same as on P. latus, but it was nearly zero when the predator was fed the fungi Aspergillus flavus Link or Penicillium sp., or cattail (Typha sp.) pollen. Survivorship was higher in the presence of pollen and lower in the presence of A. flavus or Penicillium sp. than in the absence of those types of food. Life table parameters indicated that the predator performed much better on R. axei than on P. latus. To evaluate the potential effect of L. floridensis as predator of P. latus, complementary studies are warranted to determine the frequency of migration of L. floridensis to aerial plant parts, when predation on P. latus could occur.  相似文献   

8.
Morphologically identical transgenic mint (Mentha arvensis L.) with bacterial glutathione synthetase gene has been developed. Transformed plants were obtained by co-cultivation of leaf disks with Agrobacterium tumefaciens strain LBA 4404 harbouring a binary vector pCAMBIA-CpGS that carried E. coli glutathione synthetase (GS), β-glucuronidase as reporter gene and nptII as selective marker gene for kanamycin resistance. Using a constitutive double CaMV 35S promoter and an rbcS transit peptide, we successfully addressed CpGS to the chloroplasts through pJIT 117 vector. Preculture and the presence of AS in the co-cultivation medium played a significant role in enhancing transformation frequency. The highest transformation frequency was achieved with MS selection medium supplemented with 25% coconut water, 1.12 mg l−1 BAP, 0.2 mg l−1 NAA, 50 mg l−1 kanamycin and 125 mg l−1 cefotaxime. Robust rooting of regenerated shoots was obtained in half-strength liquid MS medium containing 0.2 mg l−1 NAA and 50 mg l−1 kanamycin. The presence and expression of transgenes in transgenics (T0) was evidenced by GUS histoenzymatic assay, PCR and RT-PCR analysis of nptII and the gene of interest, i.e., GS of putative transgenic leaves. Chromosomal integration of GS gene was confirmed by Southern blot analysis. Transgenic plants were successfully acclimatized in the greenhouse. An overall transformation frequency of 15% was achieved in approximately 3 months of time period. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications. Akhilesh Kumar and Amrita Chakraborty contributed equally.  相似文献   

9.

Background  

Thymosin α1 (Tα1), a 28-amino acid N α -acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining N α -acetylation. In this study, we describe a novel production process for N α -acetylated Tα1 in Escherichia coli.  相似文献   

10.
Molecular genetic analysis of melibiose-fermenting Saccharomyces strains isolated from fermentative processes and natural sources in different world regions was conducted to deduce the evolutionary diversity of Saccharomyces yeasts and find new α-galactosidase MEL genes. The species S. bayanus, S. mikatae, and S. paradoxus were shown to have a single copy of MEL and not accumulate polymeric genes, unlike some S. cerevisiae populations. The polymeric genes MELp1 and MELp2 were identified in S. paradoxus for the first time. Genes identical by 98.7% are located on the chromosomes X and VI, respectively. Phylogenetic analysis indicates that MEL genes of the Saccharomyces yeasts are species-specific.  相似文献   

11.
Multiple studies have shown that IL23 cytokine plays an essential role in the development of autoimmune diseases by activating IL17-producing helper T (Th17) cells. Given that the susceptibility loci in IL23R for Crohn’s disease (CD) is present in Western population and not in Asian population; we screened the IL23R gene by DNA sequencing to identify susceptibility loci in a selected CD cohort and confirmed it in all our subjects (134 CD and 131 controls). A novel nonsynonymous SNP (p.Gly149Arg, c.445G>A) and 35 single nucleotide polymorphisms (SNPs) were identified. Among them, only rs11465788 was implicated in CD susceptibility (P = 4.9 × 10−4, OR = 0.30). Genotype-phenotypic interaction analysis showed that rs11465788 is associated with nonstricturing and nonpenetrating disease behaviour in CD patients (P = 0.015). Our results provide the evidence that rs11465788 may influence the susceptibility and clinical features of CD in Chinese population.  相似文献   

12.
A homologue of Sinorhizobium meliloti bacA was isolated from Mesorhizobium huakuii 7653R, which is capable of fixing atmospheric nitrogen in symbiotic association with leguminous Astragalus sinicus (Chinese milk vetch). Inactivation of the bacA gene abolished the ability of M. huakuii 7653R to establish a successful symbiosis with its host plant. Simultaneously, compared with wild-type M. huakuii 7653R, the bacA mutant was more sensitive to cell envelope-disrupting agents (acidic solution, ethanol, SDS, and crystal violet). Mass spectrometry analysis revealed that the very-long-chain fatty acid (27-OHC-28:0 and 29-OHC-30:0) contents of lipid A was reduced in the M. huakuii 7653R bacA mutant. Taken together, our data suggest that the cell envelope was altered in the M. huakuii 7653R bacA mutant, which might deteriorate bacterial adaption to acute environmental changes encountered in host cells and ultimately result in the failure of Mesorhizobium–legume symbiosis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Some citrus varieties express a form of apomixis termed nucellar embryony in which the adventive embryos develop from nucellus tissue surrounding the embryo sac. This trait results in many seeds containing multiple embryos (polyembryony). Inheritance of the frequency of polyembryony was studied in 88 progeny from a cross of Citrus maxima (monoembryonic) × Poncirus trifoliata (polyembryonic). The frequency of polyembryonic seed produced by each progeny was determined by scoring 100–500 seeds for the number of seedlings to emerge from each seed. Two groups of eight individuals from each extreme of the population were chosen for bulked segregant analysis with amplified fragment length polymorphism markers amplified with 256 primer combinations. Candidate markers identified in the bulks as linked to the trait were tested on the 32 individuals used to create the bulks and then on the remaining plants in the population. Five candidate markers tightly linked to polyembryony in P. trifoliata were identified. Specific marker alleles were present in nearly all progeny that produced polyembryonic seed, and alternate alleles were present in nearly all progeny that produced only monoembryonic seed. The region defined by these markers very likely contains a gene that is essential for the production of polyembryonic seeds by apomixis, but also shows segregation distortion. The proportion of polyembryonic seeds varied widely among the hybrid progeny, probably due to other genes. Scoring 119 progeny of a P. trifoliata selfed population for the closely linked markers and the proportion of polyembryonic seeds confirmed close linkage between these markers and polyembryony.  相似文献   

14.
The paper reports the whole mitochondrial genome (approximately 13 kb) sequencing in three individual representatives of the continental population of Blakiston’s fish owl Bubo blakistoni (Seebohm 1884), the IUCN Red List species in the family Strigidae. The analysis revealed extremely low mtDNA genetic diversity, which may be indicative of the critical state of the studied population. The phylogenetic analysis performed on the basis of the whole mitochondrial genome sequencing data showed that Blakiston’s fish owl is more closely related to the Strix genus than to the Bubo genus with the genetic divergence between blakistoni and either of the two genera being statistically significant and close to intergeneric level (p-distance of 0.135 in the case of the Strix genus and p-distance of 0.151 in the case of the Bubo genus). The results obtained in this work do not match the published data on the mitochondrial cytochrome b gene and the nuclear RAG-1 gene, which laid the basis for the assignment of Blackiston’s fish owl to the Bubo genus in the recent taxonomic bulletins, but rather support the earlier taxonomic classification according to which all four Asian forms, blakistoni, flavipes, zeylonensis, and ketupu, constituted a separate Ketupa genus.  相似文献   

15.

Background  

Coffee is an important crop and is crucial to the economy of many developing countries, generating around US70 billion per year. There are 115 species in the < i > Coffea < /i > genus, but only two, < i > C. arabica < /i > and < i > C. canephora < /i > , are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer ( < i > Hypotheneumus hampei < /i > ), is responsible for worldwide annual losses of around US70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants.  相似文献   

16.
Different lines of cell suspension cultures of Taxus × media Rehd. and Taxus floridana Nutt. were cryopreserved with a two-step freezing method using a simple and inexpensive freezing container instead of a programmable freezer. Four to seven days old suspension cell cultures were precultured in growth medium supplemented with 0.5 M mannitol for 2 d. The medium was then replaced with cryoprotectant solution (1 M sucrose, 0.5 M glycerol and 0.5 M dimethylsulfoxide) and the cells incubated on ice for 1 h. Before being plunged into liquid nitrogen, cells were frozen with a cooling rate of approximately −1 °C per min to −80 °C. The highest post-thaw cell viability was 90 %. The recovery was line dependent. The cryopreservation procedure did not alter the nuclear DNA content of the cell lines. The results indicate that cryopreservation of Taxus cell suspension cultures using inexpensive freezing container is possible.  相似文献   

17.
This study was to determine a transformation system for Miscanthus sinensis, and to optimize factors and conditions required for expression of an antisense caffeic acid O-methyltransferase gene in the M. sinensis (MsCOMT-AS). Transformation of callus derived from seeds and immature inflorescences of M. sinensis was established by using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pMBP1. In order to establish the stable transformation system, several transformation factors such as explant type, strain, co-culture periods, acetosyringone concentration, and selective markers were assessed. In this study, seven putative transgenic plants were obtained from callus transformation and plantlet regeneration. Various tests including PCR analysis and RT-PCR were used to detect the transgenic insert. The transgenic plants were also characterized for their agronomic and morphological characteristics, expression of MsCOMT-AS gene, and variation in lignocellulosic content. Biomass related traits such as plant height, number of leaves, length of leaf, stem diameter, fresh weight, dry weight, and cell size of the control plants were superior to transgenic plants. Total lignin content of transgenic plants was lower than that of the control plant due to reduced caffeic acid O-methyltransferase (COMT) gene expression related to lignin production. Cellulose and hemicellulose content in transgenic plants were not increased. Variation in cellulose and hemicellulose content had no correlation with variation in lignin content of transgenic plants. In conclusion, transgenic M. sinensis was obtained with down-regulated COMT gene. Lignin synthesis was decreased what offers possibility of crop modification for facilitated biofuel production.  相似文献   

18.
Strigolactones (SLs) are a recently discovered type of plant hormone that controls various developmental processes. The DWARF53 (D53) protein in rice and the SMAX1-LIKE (SMXL) family in Arabidopsis repress SL signaling. In this study, bioinformatics analyses were performed, and 236 SMXL proteins were identified in 28 sequenced plants. A phylogenetic analysis indicated that all potential SMXL proteins could be divided into three groups and that the SMXL proteins may have originated in Bryophytes. An analysis of the SMXL chromosomal locations suggested that gene duplication events at different times led to expansion of the SMXL family members in Angiospermae. Subsequently, the gene structure and protein modeling of MdSMXLs showed that they are highly conserved. The expression patterns of MdSMXLs indicated that they were expressed in different organs of apple (stems, roots, leaves, flowers, and fruits) at varying levels and that MdSMXLs may participate in the SL signaling pathway and the response to abiotic stress. This study provides a valuable foundation for additional investigations into the function of the SMXL gene family in plants.  相似文献   

19.
20.

Key message

We have successfully produced single-cell colonies of C. merolae mutants, lacking the PsbQ’ subunit in its PSII complex by application of DTA-aided mutant selection. We have investigated the physiological changes in PSII function and structure and proposed a tentative explanation of the function of PsbQ’ subunit in the PSII complex.

Abstract

We have improved the selectivity of the Cyanidioschyzon merolae nuclear transformation method by the introduction of diphtheria toxin genes into the transformation vector as an auxiliary selectable marker. The revised method allowed us to obtained single-cell colonies of C. merolae, lacking the gene of the PsbQ’ extrinsic protein. The efficiency of gene replacement was extraordinarily high, allowing for a complete deletion of the gene of interest, without undesirable illegitimate integration events. We have confirmed the absence of PsbQ’ protein at genetic and protein level. We have characterized the physiology of mutant cells and isolated PSII protein complex and concluded that PsbQ’ is involved in nuclear regulation of PSII activity, by influencing several parameters of PSII function. Among these: oxygen evolving activity, partial dissociation of PsbV, regulation of dimerization, downsizing of phycobilisomes rods and regulation of zeaxanthin abundance. The adaptation of cellular physiology appeared to favorite upregulation of PSII and concurrent downregulation of PSI, resulting in an imbalance of energy distribution, decrease of photosynthesis and inhibition of cell proliferation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号