首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitric oxide (NO) produced by the action of endothelial nitric oxide synthase (eNOS) plays an important role in the regulation of vascular tone, cell survival, and angiogenesis. Interaction of endothelial cells (ECs) with a fibronectin (FN) rich matrix is important in the regulation of EC function and survival during angiogenesis. The present study was carried out to examine if FN can regulate eNOS and thereby NO levels in ECs. The activity and the levels of mRNA and protein of eNOS were significantly low in HUVECs maintained in culture on FN. Inhibition of p38 MAPK and blocking the interaction of FN with α5β1 integrin using antibody caused the reversal of the FN effect. Immunoblot analysis of Ser/Thr phosphorylation of purified eNOS suggested that FN downregulates post-translational phosphorylation of eNOS at Ser residues. These results suggest that FN negatively modulates eNOS in an α5β1 integrin-p38 MAPK-dependent pathway.  相似文献   

2.
Hydrogen sulfide (H2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endothelial cells (HUVECs‐926) with NaHS (a H2S donor) stimulated the phosphorylation of endothelial NO synthase (eNOS) and enhanced NO production. H2S had little effect on eNOS protein expression in ECs. L‐cysteine, a precursor of H2S, stimulated NO production whereas blockage of the activity of H2S‐generating enzyme, cystathionine gamma‐lyase (CSE), inhibited this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well as EC proliferation. LY294002 (Akt/PI3‐K inhibitor) or SB203580 (p38 MAPK inhibitor) abolished the effects of H2S on eNOS phosphorylation, NO production, cell proliferation and tube formation. Blockade of NO production by eNOS‐specific siRNA or nitro‐L‐arginine methyl ester (L‐NAME) reversed, but eNOS overexpression potentiated, the proliferative effect of H2S on ECs. Our results suggest that H2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt‐dependent pathway, thus increasing NO production in ECs and vascular tissues and contributing to H2S‐induced angiogenesis.  相似文献   

3.
Emerging evidence suggests that arginase contributes to endothelial dysfunction in diabetes. Intracellular signaling pathways, which interplay between arginase and eNOS enzyme activity leading to the development of endothelial dysfunction in hyperglycemia are not fully understood. Here, we analyzed the possible involvement of hyperglycemia (HG) induced arginase expression in eNOS protein regulation and activity and also the impact of arginase inhibition on eNOS activity. Furthermore, the roles of p38 MAPK and Erk1/2 phosphorylation in upregulation of arginase expression and eNOS dysregulation in endothelial cells (ECs) under hyperglycemia were evaluated. Protein analysis showed a concurrent increase in arginase I expression and decrease in eNOS expression and phosphorylation at Ser1177 under HG conditions. There was no simultaneous change in phosphorylation of eNOS at Thr495 in HG. Arginase inhibition prevented increased arginase activity, restored impaired NO bioavailability and reduced superoxide anion generation. Inhibition of MAP-kinases demonstrated that, unlike Erk1/2, p38 MAPK is an upstream activator in a signaling cascade leading to increased arginase I in HG conditions. P38 MAPK protein expression and phosphorylation were increased in response to HG. In the presence of a p38 MAPK inhibitor, HG-induced arginase expression was blunted. Although Erk1/2 was activated in HG, increased arginase expression was not blocked by co-treatment with an Erk1/2 inhibitor. Activation of both, p38 MAPK and Erk1/2 in HG, induced a downregulation in eNOS activity. Hence, applying MAPK inhibitors increased eNOS phosphorylation in HG.In conclusion, these findings demonstrate contributions of arginase I in the development of endothelial cell dysfunction under HG conditions via impaired eNOS regulation, which maybe mediated by p38 MAPK.  相似文献   

4.
Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.  相似文献   

5.
The p25(rum1) is an inhibitor of Cdc2 kinase expressed in fission yeast and plays an important role in cell-cycle control. As its amino-acid sequence suggests that p25(rum1) has putative phosphorylation sites for mitogen-activated protein kinase (MAPK), we investigated the ability of MAPK to phosphorylate p25(rum1). Direct in vitro kinase assay using GST-fusion proteins of wild-type as well as various mutants of p25(rum1) demonstrated that MAPK phosphorylates the N-terminal portion of p25(rum1) and residues Thr13 and Ser19 are major phosphorylation sites for MAPK. In addition, phosphorylation of p25(rum1) by MAPK revealed markedly reduced Cdc2 kinase inhibitor ability of the protein. Together with the fact that replacement of both Thr13 and Ser19 with Glu, which mimics the phosphorylated state of these residues, also significantly reduces the activity of p25(rum1) as a Cdc2 inhibitor, it was suggested that the phosphorylation of Thr13 and Ser19 negatively regulates the function of p25(rum1). Further evidence indicates that phosphorylation of Thr13 and Ser19 may retain a negative effect on the function of p25(rum1) even in vivo. Therefore, MAPK may regulate the function of p25(rum1) via phosphorylation of its Thr and Ser residues and thus participate in cell cycle control in fission yeast.  相似文献   

6.
The purpose of this study was to investigate the role of endothelial nitric-oxide synthase (eNOS), cAMP, and p38 MAPK in tumor necrosis factor-alpha (TNF-alpha) expression induced by lipopolysaccharide (LPS). LPS dose- and time-dependently induced phosphorylation of p38 MAPK and TNF-alpha expression in neonatal mouse cardiomyocytes. TNF-alpha expression was preceded by p38 MAPK phosphorylation, and selective inhibition of p38 MAPK abrogated LPS-induced TNF-alpha expression. Deficiency in eNOS decreased basal and LPS-stimulated TNF-alpha expression in cardiomyocytes. NOS inhibitor l-NAME attenuated LPS-induced p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes, whereas NO donor 2,2'-(hydroxynitrosohydrazono)bis-ethanamine (DETA-NO) (2 microm) or overexpression of eNOS by adenoviral gene transfer restored the response of eNOS(-/-) cardiomyocytes to LPS. These effects of NO were mediated through cAMP-dependent pathway based on the following facts. First, deficiency in eNOS decreased basal levels of intracellular cAMP, and DETA-NO elevated intracellular cAMP levels in eNOS(-/-) cardiomyocytes. Second, a cAMP analogue 8-Br-cAMP mimicked the effect of NO in eNOS(-/-) cardiomyocytes. Third, either inhibition of cAMP or cAMP-dependent protein kinase attenuated LPS-stimulated p38 MAPK phosphorylation and TNF-alpha production in wild-type cardiomyocytes. In conclusion, eNOS enhances LPS-stimulated TNF-alpha expression in cardiomyocytes. Activation of p38 MAPK is essential in LPS-stimulated TNF-alpha expression. Moreover, the effects of NO on LPS-stimulated TNF-alpha expression are mediated through cAMP/cAMP-dependent protein kinase-dependent p38 MAPK pathway in neonatal cardiomyocytes.  相似文献   

7.
8.
Studies have shown that p38 MAPK and nitric oxide (NO), generated by endothelial NO synthase (eNOS), play key roles under physiological and pathophysiological conditions. Although administration of 17beta-estradiol (E2) protects cardiovascular injury from trauma-hemorrhage, the mechanism by which E2 produces those effects remains unknown. Our objective was to determine whether the E2-mediated activation of myocardial p38 MAPK and subsequent eNOS expression/phosphorylation would protect the heart following trauma-hemorrhage. To study this, male Sprague-Dawley rats underwent soft-tissue trauma (midline laparatomy) and hemorrhagic shock (mean blood pressure 35-40 mmHg for 90 min), followed by fluid resuscitation. Animals were pretreated with specific p38 MAPK inhibitor SB-203580 (SB; 2 mg/kg), and nonselective NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 30 mg/kg) 30 min before vehicle (cyclodextrin) or E2 (100 microg/kg) treatment, followed by resuscitation, and were killed 2 h thereafter. Cardiovascular performance and other parameters were measured. E2 administration following trauma-hemorrhage increased cardiac p38 MAPK activity, eNOS expression and phosphorylation at Ser(1177), and nitrate/nitrite levels in plasma and heart tissues; these were associated with normalized cardiac performance, which was reversed by SB administration. In addition, E2 also prevented trauma-hemorrhage-induced increase in cytokines (IL-6 and TNF-alpha), chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant-1), and ICAM-1, which was reversed by l-NAME administration. Administration of E2 following trauma-hemorrhage attenuated cardiac tissue injury markers, myeloperoxidase activity, and nitrotyrosine level, which were reversed by treatment with SB and l-NAME. The salutary effects of E2 on cardiac functions and tissue protection following trauma-hemorrhage are mediated, in part, through activation of p38 MAPK and subsequent eNOS expression and phosphorylation.  相似文献   

9.
10.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

11.
Endothelial cell (EC) matrix interaction is critical in angiogenesis. Although matrix components can regulate the process of angiogenesis by acting as a reservoir of various cytokines, it is not clear if extracellular matrix (ECM) can modulate the production and activity of angiogenic cytokines. Investigations were therefore carried out to study the influence of the basement membrane (BM) protein, laminin (Ln) on the activity of vascular endothelial growth factor (VEGF), the major angiogenic cytokine, using isolated human umbilical vein ECs (HUVECs) in culture. Analysis of the biochemical markers of angiogenesis confirmed proangiogenic effect of Ln. The levels of VEGF protein and mRNA were not different in cells maintained on Ln, collagen I or polylysine substrata. Chorioallantoic membrane assay using VEGF isolated from cell extracts however revealed that Ln increased its angiogenic potency. Immunoblotting and HPLC analysis showed considerable reduction in poly adenosyl ribosylation of VEGF associated with a significant decrease in the levels of NAD+, in cells maintained on Ln substrata. Further, a shift in the isoenzymic pattern of LDH towards the B rich forms and an upregulation of LDH B gene were observed in cells maintained on Ln. Ln modulates expression of LDH gene through alpha(6)beta(4) integrin mediated downstream signaling involving p38 mitogen activated protein kinases (MAPK) pathway. It thus appears that Ln can affect aerobic metabolism of ECs by modulating the expression of LDH isoenzymes resulting in a decrease in the level of NAD+ that can cause a reduction in the poly adenosyl ribosylation of VEGF altering its angiogenic potency.  相似文献   

12.
At physiological concentrations, low density lipoprotein (LDL) increases the sensitivity of platelets to aggregation- and secretion-inducing agents without acting as an independent activator of platelet functions. LDL sensitizes platelets by inducing a transient activation of p38MAPK, a Ser/Thr kinase that is activated by the simultaneous phosphorylation of Thr180 and Tyr182 and is an upstream regulator of cytosolic phospholipase A2 (cPLA2). A similar transient phosphorylation of p38MAPK is induced by a peptide mimicking amino acids 3359-3369 in apoB100 called the B-site. Here we report that the transient nature of p38MAPK activation is caused by platelet endothelial cell adhesion molecule 1 (PECAM-1), a receptor with an immunoreceptor tyrosine-based inhibitory motif. PECAM-1 activation by cross-linking induces tyrosine phosphorylation of PECAM-1 and a fall in phosphorylated p38MAPK and cPLA2. Interestingly, LDL and the B-site peptide also induce tyrosine phosphorylation of PECAM-1, and studies with immunoprecipitates indicate the involvement of c-Src. Inhibition of the Ser/Thr phosphatases PP1/PP2A (okadaic acid) makes the transient p38MAPK activation by LDL and the B-site peptide persistent. Inhibition of Tyr-phosphatases (vanadate) increases Tyr-phosphorylated PECAM-1 and blocks the activation of p38MAPK. Together, these findings suggest that, following a first phase in which LDL, through its B-site, phosphorylates and thereby activates p38MAPK, a second phase is initiated in which LDL activates PECAM-1 and induces dephosphorylation of p38MAPK via activation of the Ser/Thr phosphatases PP1/PP2A.  相似文献   

13.
14.
Lee J  Sun C  Zhou Y  Lee J  Gokalp D  Herrema H  Park SW  Davis RJ  Ozcan U 《Nature medicine》2011,17(10):1251-1260
Here we show that p38 mitogen-activated protein kinase (p38 MAPK) phosphorylates the spliced form of X-box binding protein 1 (Xbp1s) on its Thr48 and Ser61 residues and greatly enhances its nuclear migration in mice, whereas mutation of either residue to alanine substantially reduces its nuclear translocation and activity. We also show that p38 MAPK activity is markedly reduced in the livers of obese mice compared with lean mice. Further, we show that activation of p38 MAPK by expression of constitutively active MAP kinase kinase 6 (MKK6Glu) greatly enhances nuclear translocation of Xbp1s, reduces endoplasmic reticulum stress and establishes euglycemia in severely obese and diabetic mice. Hence, our results define a crucial role for phosphorylation on Thr48 and Ser61 of Xbp1s in the maintenance of glucose homeostasis in obesity, and they suggest that p38 MAPK activation in the livers of obese mice could lead to a new therapeutic approach to the treatment of type 2 diabetes.  相似文献   

15.
16.
Ebselen, a selenium-containing heterocyclic compound, prevents ischemia-induced cell death. However, the molecular mechanism through which ebselen exerts its cytoprotective effect remains to be elucidated. Using sodium nitroprusside (SNP) as a nitric oxide (NO) donor, we show here that ebselen potently inhibits NO-induced apoptosis of differentiated PC12 cells. This was associated with inhibition of NO-induced phosphatidyl Serine exposure, cytochrome c release, and caspase-3 activation by ebselen. Analysis of key apoptotic regulators during NO-induced apoptosis of differentiated PC12 cells showed that ebselen blocks the activation of the apoptosis signaling-regulating kinase 1 (ASK1), and inhibits phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal protein kinase (JNK). Moreover, ebselen inhibits NO-induced p53 phosphorylation at Ser15 and c-Jun phosphorylation at Ser63 and Ser73. It appears that inhibition of p38 MAPK and p53 phosphorylation by ebselen occurs via a thiol-redox-dependent mechanism. Interestingly, ebselen also activates p44/42 MAPK, and inhibits the downregulation of the antiapoptotic protein Bcl-2 in SNP-treated PC12 cells. Together, these findings suggest that ebselen protects neuronal cells from NO cytotoxicity by reciprocally regulating the apoptotic and antiapoptotic signaling cascades.  相似文献   

17.
Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells   总被引:1,自引:0,他引:1  
Endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO), which is involved in various physiological functions of the cardiovascular system. eNOS is activated by dephosphorylation at Thr495 and phosphorylation at Ser1177. Inhibition of Rho-kinase, an effector of the small GTPase RhoA, leads to activation of Akt/PKB, which phosphorylates eNOS at Ser1177 and thereby promotes NO production. However, little is known about the effects of Rho-kinase on phosphorylation of Thr495. We here found that the constitutively active form of Rho-kinase phosphorylated eNOS at Thr495 in vitro. Expression of the constitutively active form of RhoA or Rho-kinase increased this phosphorylation in COS-7 cells. Addition of thrombin to cultured human umbilical vein endothelial cells induced phosphorylation of eNOS at Thr495. Treatment with Y27632, a Rho-kinase inhibitor, suppressed thrombin-induced phosphorylation at Thr495. These results indicate that Rho-kinase can directly phosphorylate eNOS at Thr495 to suppress NO production in endothelium.  相似文献   

18.
Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase (O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr(308) and Ser(473) phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.  相似文献   

19.
The p53 tumor suppressor protein preserves genome integrity by regulating growth arrest and apoptosis in response to DNA damage. In response to ionizing radiation (IR), ATM, the gene product mutated in ataxia telangiectasia, stabilizes and activates p53 through phosphorylation of Ser(15) and (indirectly) Ser(20). Here we show that phosphorylation of p53 on Ser(46), a residue important for p53 apoptotic activity, as well as on Ser(9), in response to IR also is dependent on the ATM protein kinase. IR-induced phosphorylation at Ser(46) was inhibited by wortmannin, a phosphatidylinositol 3-kinase inhibitor, but not PD169316, a p38 MAPK inhibitor. p53 C-terminal acetylation at Lys(320) and Lys(382), which may stabilize p53 and activate sequence-specific DNA binding, required Ser(15) phosphorylation by ATM and was enhanced by phosphorylation at nearby residues including Ser(6), Ser(9), and Thr(18). These observations, together with the proposed role of Ser(46) phosphorylation in mediating apoptosis, suggest that ATM is involved in the initiation of p53-dependent apoptosis after IR in human lymphoblastoid cells.  相似文献   

20.
The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38alpha MAPK down-regulates TAK1 and showed that p38alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38alpha/beta MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFalpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNFalpha-stimulated activation of MAPK cascades and IkappaB (inhibitor of nuclear factor kappaB) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFalpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号